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The Basic Ideas

▶ This talk will roughly follow our recent preprint4

▶ We primarily concern ourselves with two topics in graph theory: (1)
optimal transportation metrics between probability measures on graphs,
and (2) effective resistance between nodes on graphs

▶ We show that these notions can be “interpolated" in a natural way by a
family of metrics between probability measures

▶ In the “p = 2" case of this family, there are several novel properties worth
exploring

▶ And these lead to interesting implications for learning on graph data

4Sawyer Robertson, Zhengchao Wan, and Alexander Cloninger. “All You Need is Resistance:
On the Equivalence of Effective Resistance and Certain Optimal Transport Problems on Graphs”.
In: arXiv preprint arXiv:2404.15261 (2024).
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Introduction
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Basic Notations

▶ Let G = (V , E , w) be a graph, where V = {1, 2, . . . , n} is the set of
vertices, E ⊂

(V
2

)
is a set of undirected edges of size m ≥ 0. E ′ are the

oriented edges, i.e., E ′ = {(i , j) : i ∼ j, i < j}.

▶ w = (wij)i,j∈V is a choice of real edge weights satisfying wij ≥ 0, wij = wji ,
and wij > 0 if and only if {i , j} ∈ E .

▶ We assume that G is finite, has no multiple edges or loops, and is
connected.

▶ A path in G is an ordered sequence of nodes P = (i0, i1, . . . , ik) such that
iℓ ∼ iℓ+1 for 0 ≤ ℓ ≤ k − 1.

▶ For i , j ∈ V , d(i , j) is the shortest-path distance between the nodes.



Introduction Beckmann metrics Commute Times Graph Sobolev Spaces Application: Digit Clustering Acknowledgements

Useful matrices

▶ We define the Adjacency matrix A ∈ Rn×n entrywise by

Aij =
{

wij if i ∼ j
0 otherwise

. (1.1)

▶ For each i ∈ V we define its degree di =
∑

j∼i wij . We will also use the
diagonal degree matrix D = diag(d1, . . . , dn) ∈ Rn×n and the diagonal
edge weight matrix W = diag(we1 , . . . , wem ) ∈ Rm×m.

▶ We define the incidence matrix B ∈ Rn×m, with rows indexed by V and
columns indexed by E ′, by the formula:

Bi,ej =


1 if ej = (i , ·)
−1 if ej = (·, i)
0 otherwise

. (1.2)

▶ We define the Laplacian matrix L by the formula L = D − A, or
L = BWBT .
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Background: OT I

▶ Generally speaking, optimal transportation is a class of problems related to
finding minimal-cost or minimal-energy methods for transporting mass
distributed according to an initial probability measure α to a terminal
measure β.56

▶ Many, many, many uses: Image processing7, fluid mechanics8, computer
vision9, ....

5Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport”. In: Center for
Research in Economics and Statistics Working Papers 1.2017-86 (2017).

6Filippo Santambrogio. “Optimal transport for applied mathematicians”. In: Birkäuser, NY
55.58-63 (2015).

7Justin Solomon et al. “Earth mover’s distances on discrete surfaces”. In: ACM Transactions
on Graphics (ToG) 33.4 (2014).

8Jean-David Benamou and Yann Brenier. “A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem”. In: Numerische Mathematik 84.3 (2000),
pp. 375–393.

9Caroline Moosmüller and Alexander Cloninger. “Linear optimal transport embedding: Provable
wasserstein classification for certain rigid transformations and perturbations”. In: arXiv preprint
arXiv:2008.09165 (2020).
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OT on Graphs

We define the probability measure simplex P(V ) by the set

P(V ) :=

{
α ∈ ℓ(V ) : α ≥ 0,

∑
i∈V

α(i) = 1

}
. (1.3)

For i ∈ V , δi is the Dirac or unit measure at node i , identified with the i-th
standard basis vector in Rn.

Definition
Let α, β ∈ P(V ), 1 ≤ p < ∞. Define the set of couplings between α and β, denoted Π(α, β),
by the following set

Π(α, β) =
{

π ∈ Rn×n : π ≥ 0, π1 = α, 1T
π = β

T
}

, (1.4)

where 1 ∈ Rn is the vector containing all ones. We define the p-Wasserstein distance between
two probability measures, denoted Wp(α, β) by the following optimization problem:

Wp(α, β) = inf

{(∑
i,j∈V

πij d(i, j)p

)1/p

: π ∈ Π(α, β)

}
. (1.5)
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OT on Graphs II

▶ Wp is a metric on the probability simplex for all 1 ≤ p < ∞

▶ For this talk we are primarily interested in the case p = 1, 2.

▶ On graphs specifically, W1 has been used for a variety of things; including
graph Ricci curvature10 and clustering models that use it11, graph-based
approximations to W1 on other spaces12, image processing13, ...

▶ Something fun happens on graphs for the W1 problem...

10Frank Bauer, Jürgen Jost, and Shiping Liu. “Ollivier-Ricci curvature and the spectrum of the
normalized graph Laplace operator”. In: arXiv preprint arXiv:1105.3803 (2011).

11Yu Tian, Zachary Lubberts, and Melanie Weber. “Curvature-based clustering on graphs”. In:
arXiv preprint arXiv:2307.10155 (2023).

12Tam Le et al. “Tree-sliced variants of Wasserstein distances”. In: Advances in neural
information processing systems 32 (2019).

13Ernest K Ryu et al. “Vector and matrix optimal mass transport: theory, algorithm, and
applications”. In: SIAM Journal on Scientific Computing 40.5 (2018).
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Min Cost Flow Approach

W1(α, β) = inf

{∑
e

|J(e)|we : J : E ′ → R, BJ = α − β

}
(1.6)

▶ It turns out that W1 can be expressed as a min cost flow problem, which is
a classical computer science problem related to linear programming,
network simplex algorithms, ...

▶ This formulation is sometimes called the “Beckmann problem" on graphs,
owing to flow-based formulations of Martin Beckmann14.

▶ Gives us access to new approaches in primal-dual methods, regularization,
and beyond

▶ “Why don’t you just square the penalty?" – Too many people

14Martin Beckmann. “A continuous model of transportation”. In: Econometrica: Journal of the
Econometric Society (1952).
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Effective Resistance

Definition
Let i, j ∈ V be any two nodes. The effective resistance between i, j, denoted rij , is given by the
formula

rij = (δi − δj )T L†(δi − δj ), (1.7)

where L† is the Moore-Penrose psuedoinverse of L.

▶ The name originates from its usage in electrical network models, random
walks, and the like

▶ rij = ∥L−1/2(δi − δj)∥2
2 where L−1/2 is (abusively) defined as the square

root of L†, can also be written spectrally in a nice way
▶ rij is a metric on the nodes- not obvious, and very useful
▶ Amuse-bouche: graph sparsification methods15, GNNs16, graph Ricci

curvature17, ...
15Daniel A Spielman and Nikhil Srivastava. “Graph sparsification by effective resistances”. In:

Proceedings of the fortieth annual ACM symposium on Theory of computing. 2008.
16Mitchell Black et al. “Understanding oversquashing in gnns through the lens of effective

resistance”. In: International Conference on Machine Learning. PMLR. 2023, pp. 2528–2547.
17Karel Devriendt and Renaud Lambiotte. “Discrete curvature on graphs from the effective

resistance”. In: Journal of Physics: Complexity 3.2 (2022).
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ER and Random Walks

Definition
The simple random walk on G is the Markov chain (Xt )t≥0 on the state space of nodes V with
transition probability matrix D−1A; that is,

P[Xt+1 = j|Xt = i] =

{
wij
di

if i ∼ j
0 otherwise

.

▶ For i ∈ V , Ti = inf{t ≥ 0 : Xt = i} is the hitting time for node i .

▶ For i , j ∈ V , the commute time is defined by:

C(i , j) = E [Ti : X0 = j] + E [Tj : X0 = i ] .

▶ It holds: rij = 1
vol(G) C(i , j).
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Beckmann metrics
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p-Beckmann distance

▶ The p-Beckmann distance has a simple motivation: what if instead of
studying an ℓ1 penalty in the min cost flow problem between α, β ∈ P(V ),
we study an ℓp penalty?

▶ We lose touch with the coupling-based optimal transportation formulation

▶ And obtain a family of interesting optimal transport metrics

Definition
Let 1 ≤ p < ∞ and α, β ∈ P(V ). Then the p-Beckmann distance between α, β, denoted
Bp(α, β) is given by the following constrainted norm optimization problem:

Bp(α, β) = inf

{(∑
e∈E

|J(e)|pwe

)1/p

: J : E ′ → R, BJ = α − β

}
(2.1)
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Comparing p = 1 and p = 2

Theorem

Let α, β ∈ P(V ). It holds:
1. When p = 1, B1(α, β) = W1(α, β).
2. When p = 2, B2(α, β)2 = (α − β)T L†(α − β).

▶ The proof of (1) is well-known and can be found in18, and (2) is in our
preprint; it’s short- apply a change of variables using the formula
L = BWBT , and then the result follows from properties of L†.

▶ In some sense, Bp is an interpolation between W1 and effective resistance
between probability measures

▶ Which also raises the question: What is ER between probability measures?
Are there interesting theoretical properties there?

18Peyré, Cuturi, et al., “Computational optimal transport”.
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Some Precedent

▶ Alamgir and von Luxburg proved a “Dirac" version of this result; but were
only focused on nodes as opposed to measures19.

Theorem (Alamgir, von Luxburg, 2011)
Let i, j ∈ V . For brevity put r (p)

ij = Bp(δi , δj ). Then:

1. (p = 1), r (1)
ij is the (weighted) shortest path distance between i, j;

2. (p = 2), r (2)
ij is the effective resistance between i, j;

3. (p = ∞), As p → ∞, r (p)
ij → 1/mincut(i, j).

19Morteza Alamgir and Ulrike Luxburg. “Phase transition in the family of p-resistances”. In:
Advances in neural information processing systems 24 (2011).
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Example

α

β

(a) p = 1,
B1(α, β) = W1(α, β) ≈ 9.3.

α

β

(b) p = 2, W2(α, β) ≈ 1.225,
B2(α, β) ≈ 1.499
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An informative estimate

Proposition
Let α, β ∈ P(V ). Then

B2(α, β) ≤ C1W1(α, β) ≤ C2B2(α, β) (2.2)
for some constants C1, C2 that do not depend on α, β. If in particular the graph is unweighted,
then we have that C1 = 1 and C2 = m1/2, so that

B2(α, β) ≤ W1(α, β) ≤ m1/2B2(α, β). (2.3)

▶ This estimate shows that W1 and B2 are equivalent as metrics.

▶ Although this bound is a bit brutal, it is sharp. Suppose G is a path on n
vertices with m = n − 1, then the upper and lower bounds are achieved,
respectively, when we have:

1. α = δ1, β = δn, so that B2(δ1, δn) =
√

n − 1 and W1(δ1, δn) = n − 1 so
W1 = m1/2B2.

2. α = δ1 and β = δ2, so that B2 = W1 = 1.
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Example: Trees

Proposition
Let T = (V , E , w) be a weighted tree, α, β ∈ P(V ), and fix 1 ≤ p < ∞. For an edge
e = (i, j) ∈ E ′, define Kα by

Kα(e = (i, j)) =
∑

k∈V ∗(i ;e)

α(k),

where V ∗(i ; e) ⊂ V is the set of nodes belonging to the subtree with root i obtained from T by
removing the edge e (and similarly for Kβ). Then it holds

Bp(α, β) = ∥Kα − Kβ∥w,p . (2.4)
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Commute Times
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Motivation

▶ As mentioned earlier, an intresting question comes up: if we “forget" the
background of transportation distances, are there things we can say about
effective resistance between measures, as opposed to nodes?

▶ Namely, define rαβ = (α − β)T L†(α − β)

▶ A useful tool are stopping rules and access times for measures. These are
studied in detail by Lovász and Winkler20, and later, Beveridge21 across a
series of papers from the mid-1990s through the 2010s, most recently.

Definition
A stopping rule is a map Γ that associates to each finite path ω = (X0, X1, . . . , Xk ) on G a
number Γ(ω) in [0, 1]. We can think of Γ(ω) as the probability that we continue a random walk
given that ω is the walk so far observed. Alternatively, Γ can be considered a random variable
taking values in {0, 1, 2, . . . } whose distribution depends only on the steps (X0, X1, . . . , XΓ).

20László Lovász and Peter Winkler. “Efficient stopping rules for Markov chains”. In:
Proceedings of the twenty-seventh annual ACM symposium on Theory of computing. 1995.

21Andrew Beveridge. “A hitting time formula for the discrete Green’s function”. In:
Combinatorics, Probability and Computing 25.3 (2016).
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Access Times

Definition
Let α, β ∈ P(V ). The access time H(α, β) is defined as

H(α, β) = inf {E[Γ|X0 ∼ α] : Γ is a stopping rule and XΓ ∼ β} . (3.1)
where for any random variable Y on V , we say Y ∼ α if P[Y = i] = α(i) for i ∈ V . In other
words, H(α, β) is the minimum mean length of walks that originate with distribution α and
terminate according to a stopping rule that achieves distribution β at stopping time. If Γ achieves
the inf in H(α, β), then Γ is said to be an optimal stopping rule.

▶ The so-called “naïve" stopping rule Γn can be obtained from the following
construction: at the beginning of the random walk, sample j ∼ β, and
stop the walk when XΓn = j. It is readily verified that XΓn ∼ β, and that

E[Γn] =
∑
i,j∈V

αi βjH(i , j)

where for i , j ∈ V , the hitting time H(i , j) is defined by H(i , j) = H(δi , δj)
(or, the mean number of steps to reach j from i).



Introduction Beckmann metrics Commute Times Graph Sobolev Spaces Application: Digit Clustering Acknowledgements

Properties of Access Times

▶ If we set H(i , j) = H(δi , δj), recall that rij = 1
vol(G) (H(i , j) + H(j, i)).

▶ This construction leads to a natural conjecture given some known
properties of (node) effective resistance...

Conjecture
Let α, β ∈ P(V ). Then does it hold that

rαβ =
1

vol(G)
(H(α, β) + H(β, α)) ?

▶ It turns out this is false. But we were able to obtain a formula for rαβ in
terms of access times.

Theorem (Generalized Commute Time Formula)
Let α, β ∈ P(V ). Then it holds that:

rαβ = −
1

vol(G)

∑
i∈V

(αi − βi )(H(α, i) − H(β, i)) (3.2)
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Access Time Inequalities

▶ We term the preceding result a “generalized commute time formula," since
when α, β are concentrated at nodes i , j ∈ V , it reduces to the commute
time representation of rij .

▶ Although the conjecture is not true, is it close? Sort of...

Corollary (Measure Commute Time Inequalities)
Let α, β ∈ P(V ). Then rαβ satisfies the following two inequalities:

rαβ ≤
2

vol(G)
max{H(α, β), H(β, α)} (3.3)

rαβ ≤
1

vol(G)
(Hn(α, β) + Hn(β, α)) (3.4)

where Hn(α, β) = E[Γn] (resp. Hn(β, α)) is the expected duration of the naïve stopping rule with
initial distribution α (resp. β) and stopping node sampled from β (resp. α).
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Graph Sobolev Spaces
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Some Background

▶ Another perspective on the ℓ2 problem is through graph Sobolev-type spaces.

▶ For a bit of background from the continuous setting, we follow Villani22

▶ Recall that if f : Rn → R is a function with a square integrable weak derivative ∇f and
dµ = gdx is a Borel probability measure which is absolutely continuous with respect to the
Lebesgue measure we can define the Sobolev-type seminorm ∥ · ∥2

Ḣ1(µ) by

∥f ∥2
Ḣ1(dµ) =

∫
Rn

∥∇f ∥2
2dµ. (4.1)

▶ The dot Ḣ1(dµ) serves to distinguish ∥ · ∥2
Ḣ1(dµ) from a true Sobolev norm, which include a

contribution from ∥ · ∥L2 .

▶ We can then define the possibly infinite dual norm to ∥f ∥2
Ḣ1(dµ), denoted ∥ · ∥Ḣ−1(dµ) by

the following, for any dx-absolutely continuous signed measure dν = hdx :

∥dν∥Ḣ−1(µ) = sup

{∫
Rn

fhdµ : ∥f ∥Ḣ1(dµ) ≤ 1

}
. (4.2)

22Cédric Villani. Topics in optimal transportation. Vol. 58. American Mathematical Soc., 2021.
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A Benamou-Brenier-type formula

▶ Benamou and Brenier23 introduced an approach to the 2-Wasserstein
problem in the continuous setting and obtain a formulation in terms of
minimal energy time-dependent density and velocity fields which satisfy
certain transport equations.

▶ Their formula can also be written in an Ḣ−1 form, i.e., as a minimum of
Sobolev norms over arcs of measures which satisfify µ, ν initial and
terminal conditions. For more, see24.

Theorem (Benamou-Brenier formula, Ḣ−1 form)

Let µ, ν be Borel probability measures on Rn. Then it holds:

W2(µ, ν) = inf
{∫ 1

0
∥dµt∥Ḣ−1(µt ) : µ0 = µ, µ1 = ν

}
. (4.3)

23Benamou and Brenier, “A computational fluid mechanics solution to the Monge-Kantorovich
mass transfer problem”.

24Rémi Peyre. “Comparison between W2 distance and H- 1 norm, and localization of
wasserstein distance”. In: ESAIM: Control, Optimisation and Calculus of Variations 24.4 (2018).
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The Graph setup

▶ Recall that the map f 7→ BT f : ℓ(V ) → ℓ(E ′), defined locally by

(BT f )(e = (i , j)) = f (i) − f (j)

is often considered the graph gradient operator BT = ∇ (and similarly,
B = div); namely, since BWBT = div W ∇ = L.

Definition
Let f , g ∈ ℓ(V ). We define the graph Sobolev seminorm ∥ · ∥Ḣ1(V ) by the equation

∥f ∥2
Ḣ1(V ) =

∑
(i,j)∈E′

wij |∇f (i, j)|2
2 =

∑
(i,j)∈E′

wij |f (i) − f (j)|2
2. (4.4)

We define the (possibly infinite) dual graph Sobolev norm ∥ · ∥Ḣ−1(V ) by the supremum

∥g∥2
Ḣ−1(V ) = sup

{
f T g : ∥f ∥Ḣ1(V ) ≤ 1

}
. (4.5)
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Graph Benamou-Brenier Formula

▶ For mean zero functions, ∥ · ∥Ḣ1(V ) and ∥ · ∥Ḣ−1(V ) will be true norms (in
particular, the former will be definite and the latter will be finite).

Proposition
Let f , g ∈ ℓ(V ). Then the following hold:

1. ∥f ∥2
Ḣ1(V ) = f T Lf .

2. If 1T g = 0, then ∥g∥2
Ḣ−1(V ) = gT L†g .

▶ We also observe here that B2(α, β) = ∥α − β∥Ḣ−1(V ).
▶ We say µt ∈ C1([0, 1]) if the map t 7→ µt : [0, 1] → ℓ(V ) is continuously

differentiable as a map from [0, 1] to Rn. We write dµt = d
ds µs

∣∣
s=t

.

Theorem (Graph Benamou-Brenier Formula)
Let α, β ∈ P(V ). Then we have

B2(α, β)2 = inf

{∫ 1

0

∥dµt ∥2
Ḣ−1(V ) dt : µt ∈ C1([0, 1]), µ0 = α, µ1 = β

}
. (4.6)



Introduction Beckmann metrics Commute Times Graph Sobolev Spaces Application: Digit Clustering Acknowledgements

Application: Digit Clustering
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Measures as Data

▶ A typical classification scenario usually consists of some data {xi } ⊂ Rn

which one wishes to separate into classes or clusters.

▶ In many applications252627, the data xi can often occur not as vectors in
Rn but as distributions µi on Rn.

▶ For example, consider a hypothetical dataset of images with resolution
k × ℓ. In this setting, G is the k × ℓ lattice graph, and after normalization
each image can be understood as a distribution on G .

▶ Transportation metrics can be used as the basis for kernel functions or
other unsupervised or semi-supervised techniques for differentiating the
images.

25Alexander Cloninger et al. “People mover’s distance: Class level geometry using fast pairwise
data adaptive transportation costs”. In: Applied and Computational Harmonic Analysis 47.1
(2019).

26Yin Zhang, Rong Jin, and Zhi-Hua Zhou. “Understanding bag-of-words model: a statistical
framework”. In: International journal of machine learning and cybernetics 1 (2010).

27Robert V Bruggner et al. “Automated identification of stratifying signatures in cellular
subpopulations”. In: Proceedings of the National Academy of Sciences 111.26 (2014).
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Image Measures on a Lattice

x 7→ x/(1T x) α 7→ L−1/2α

R64 P(V ) ℓ2(V )

−0.05 0 0.05157.50

Figure: An illustration of the preprocessing pipeline for the digits data28, with an example from
the class of handwritten zeros. The first step is a mass normalization to convert the pixel values
into a fixed-sum distribution viewed on the nodes V of the 8 × 8 lattice graph. The second step is
an embedding α 7→ L−1/2α, such that ℓ2 distance in the target corresponds to 2-Beckmann
distance in P(V ). When computing W2, we omit the final step.

28E. Alpaydin and Fevzi. Alimoglu. Pen-Based Recognition of Handwritten Digits. UCI Machine
Learning Repository. 1998.



Introduction Beckmann metrics Commute Times Graph Sobolev Spaces Application: Digit Clustering Acknowledgements

B2 vs. W2

▶ Using the digits dataset, and for each pair of digit classes, we computed
the pairwise 2-Beckmann and 2-Wasserstein distances for each pair of
samples originating from the respective digit classes (with around 30,000
pairs of distances per pair of digit classes). Within each tile of the grid, we
render a scatterplot of the distances over the overall linear regression
between B2 and W2 for the experiment given by W2 ≈ 8.446B2.
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B2 vs. W2

Figure
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Clustering the Digits

▶ Using the digits dataset, we demonstrate the results of an unsupervised
clustering algorithm with different choices of similarity kernel.

▶ We built a k = 42 nearest neighbor graph on the nodes, and then apply
spectral clustering to create predicted classes.

▶ The text labels of the nodes correspond to the ground truth classes, i.e.,
digit values. The colors of the nodes on the left (resp. right) are given by
the ground truth classes (resp. predicted classes).
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Clustering Performance

Figure: Similarity kernel between each image is given by exp{−B2(·, ·)2}
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Clustering Performance II

Figure: Similarity kernel between each image is given by exp{−W2(·, ·)2}
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Clustering Performance III

▶ We evaluate the performance of the unsupervised clustering alogrithm for
each kernel. We compare across several metrics, including Rand index (RI)
and adjusted Rand index (ARI) ; mutual information (MI) and adjusted
mutual information (AMI); and homogeneity (Hom) and completeness
(Com).

▶ In all such cases other than MI, a value of 1.0 corresponds to perfect
clustering as compared to the ground truth. Since the predictions depend
on a random initialization in the k-means step, we simulated 100 runs of
the algorithm and reported the best result for each kernel across the six
metrics.

RI ARI MI AMI Hom Com
B2 0.940 0.685 1.782 0.783 0.774 0.797
W2 0.935 0.656 1.719 0.755 0.747 0.775
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