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Our journey begins in 197312.

1William E Donath and Alan J Hoffman. “Lower bounds for the partitioning
of graphs”. In: IBM Journal of Research and Development 17.5 (1973),
pp. 420–425.

2Miroslav Fiedler. “Algebraic connectivity of graphs”. In: Czechoslovak
mathematical journal 23.2 (1973), pp. 298–305.



We are all pretty familiar with spectral clustering at this point.... . .

If G has nice community structure, we can recover it using the
eigenvector(s) of the graph Laplacian.
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Let L = I − D−1/2AD−1/2 be the normalized Laplacian.

λ2 = min
f⊥1

f TLf

f T f

= min
f⊥1

∑
{i ,j} |fi − fj |2∑

i |fi |2di
.

The argmin which we write u2 solves

Lu2 = λ2u2.
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{u2 < 0} {u2 > 0}

The sets {u2 > 0} and {u2 < 0} solve a relaxation of this
problem.3

3Jianbo Shi and Jitendra Malik. “Normalized cuts and image
segmentation”. In: IEEE Transactions on pattern analysis and machine
intelligence 22.8 (2000), pp. 888–905.



But is this consistent in a structural sense?

Suppose we have two (latent, planted) communities A,B ⊆ V
obtained from some model, and we put:

Â = {u2 < 0}

B̂ = {u2 > 0}

Can we guarantee Â,A are close w.h.p.? Similarly for B̂.
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This is a very difficult question because it requires pretty precise
knowledge of the entries of u2 in a random graph model4. . .

To get to this destination, we start from scratch.

What about A?

4Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. “Consistency of
Spectral Clustering”. In: The Annals of Statistics 36.2 (Apr. 2008).
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Definition (Inhomogeneous ER random graph)

Let n ≥ 2 and P ∈ Rn×n be an n × n symmetric matrix of
probabilities pij ∈ [0, 1]. We assume pii = 0. We construct a
random graph G as follows. Let G have vertex set
[n] = {1, 2, . . . , n} and, for each e = {i , j} =∈

([n]
2

)
, we add the e

to G with probability pij . We say G ∼ G(n,P).

Example (Planted Community Model)

Let A = {1, . . . , n} and B = {n + 1, . . . , 2n} for some n ≥ 1. Let
p, q ∈ [0, 1] and choose by convention p ≥ q. Set:

pij =

{
p if i , j ∈ A or i , j ∈ B

q otherwise

Also called the stochastic block model.



n = 20, p = 0.5, q = 0.05



n = 50, p = 0.25, q = 0.025

We can see this is a natural petri dish for community detection
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Other examples of inhomogeneous ER graphs include:

▶ Chung-Lu expected degree graphs

▶ Random dot product graphs

▶ ...



For A ∼ G(n,P), set A:

Aij = E (Aij) = pij

D ii =
∑
j

Aij =: d i

and L = I − D
−1/2

AD
−1/2

.

These are adjacency and Laplacian matrices of weighted graphs.
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We ask:

When can we guarantee that ∥A− A∥ is small with high
probability?5

The answer: roughly O(
√
log n) provided the model is “not too
sparse.”

5Always operator norm.
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Our journey picks up in 2009...

Let d = mini d i , ∆ = maxi d i .

Theorem (Oliveira (2009)6)

For any c > 0 there exist C = C (c) > 0, independent of n,P, such
that the following holds. If ∆ > C ln n, then for all n−c ≤ δ ≤ 1/2,

∥A− A∥ ≤ 4
√

∆ ln(n/δ)

w.p. at least 1− δ. If d ≥ C ln n, then for the same range of δ:

∥L− L∥ ≤ 14

√
ln(4n/δ)

d

w.p. at least 1− δ.

6Roberto Imbuzeiro Oliveira. “Concentration of the adjacency matrix and of
the Laplacian in random graphs with independent edges”. In: arXiv preprint
arXiv:0911.0600 (2009).
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Chung and Radcliffe improve this two years later...

Theorem (Chung and Radcliffe (2011)7)

Let ϵ > 0 be fixed and suppose that for n sufficiently large, it holds
∆ > 4

9 log (2n/ϵ). Then:

∥A− A∥ ≤ 4
√
∆ log(2n/ϵ)

w.p. at least 1− ϵ. Moreover there exists k = k(ϵ) such that if
d ≥ k log n, then

∥L− L∥ ≤ 3

√
3 log(4n/ϵ)

d

w.p. at least 1− ϵ.

7Fan Chung and Mary Radcliffe. “On the spectra of general random
graphs”. In: the electronic journal of combinatorics (2011), P215–P215.
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The proof of Chung and Radcliffe’s version uses the following
matrix Bernstein inequality.

Theorem (Matrix Bernstein inequality8)

Let B1,B2, . . . ,Bk be independent n × n random Hermitian
matrices. Assume that ∥Bi − E (Bi ) ∥ ≤ M for all i and set
ν = ∥

∑k
i=1Var (Bi ) ∥. Writing B =

∑k
i=1 Bi , we have that for

any a > 0,

P (∥B − E (B) ∥ > a) ≤ 2n exp

{
− a2

2ν + 2Ma/3

}
. (1.1)

8Joel A Tropp. “User-friendly tail bounds for sums of random matrices”. In:
Foundations of computational mathematics 12 (2012), pp. 389–434.
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A quick detour. What does ∥A− A∥ small get us?

Theorem (Weyl’s inequality)

Let B,C ∈ Cn×n be Hermitian matrices with eigenvalues λk(·)
ordered ascending. Then

|λk(A)− λk(B)| ≤ ∥A− B∥.

Usually λk(A) and λk(L) are easy to obtain.
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For the planted community model, if d = di = (n − 1)p + nq,

L =
1

d



d −p · · · −p −q · · · −q
−p d · · · −p −q · · · −q
...

...
. . .

...
...

. . .
...

−p −p · · · d −q · · · −q
−q −q · · · −q d −p · · · −p
−q −q · · · −q −p d · · · −p
...

...
. . .

...
...

. . .
...

−q −q · · · −q −p −p · · · d



λk(L) = 0,
2nq

d
,
d + p

d
× (2n − 1)

u2 ∝ [1Tn − 1Tn ]
T



Theorem (Davis-Kahan Theorem9)

Let B, B̂ ∈ Rn×n be symmetric, with eigenvalues λ1 ≤ . . . ≤ λn

and λ̂1 ≤ . . . ≤ λ̂n respectively. Fix j ∈ {1, . . . , n}, and assume
that min(λj − λj−1, λj+1 − λj) > 0, where λ0 := −∞ and

λn+1 := ∞. If v , v̂ ∈ Rn satisfy Bv = λjv and B̂v̂ = λ̂j v̂ , then

sinΘ(v̂ , v) ≤ 2∥B̂ − B∥
min(λj−1 − λj , λj − λj+1)

.

Moreover, if v̂T v ≥ 0, then

∥v̂ − v∥ ≤ 23/2∥B̂ − B∥
min(λj−1 − λj , λj − λj+1)

.

So we can begin to get a glimpse of our destination...

9Yi Yu, Tengyao Wang, and Richard J Samworth. “A useful variant of the
Davis–Kahan theorem for statisticians”. In: Biometrika 102.2 (2015),
pp. 315–323.
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In 2014, Lei and Rinaldo provide what is probably the strongest
matrix concentration inequality for this model.

Theorem (Lei and Rinaldo10)

Let r > 0 be fixed. Assume that nmaxij pij ≤ s for s ≥ c log n for
some c > 0. Then there exists a constant C = C (r , c) such that

∥A− A∥ ≤ C
√
s

with probability at least 1− n−r .

Wonderfully clean theorem. The proof? Another story (all things
considered not too bad). The catch?

No L.

10Jing Lei and Alessandro Rinaldo. “Consistency of spectral clustering in
stochastic block models”. In: The Annals of Statistics (2015), pp. 215–237.
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Finally, we reach 2020 with a paper of Deng, Ling, amd Strohmer
which puts the matter to rest.

Theorem (Deng, Ling, amd Strohmer11)

Assume that nmaxij pij ≥ c log n for some c ≥ 1. Then for any
r > 0, there exists C = C (c , r) such that

∥L− L∥ ≤
C (nmaxij pij)

5/2

min{dmin, d}3

with probability at least 1− n−r . Here dmin is the minimum degree
of A.

This bound needs to be de-randomized to be useful but is strong
otherwise.

11Shaofeng Deng, Shuyang Ling, and Thomas Strohmer. “Strong
consistency, graph laplacians, and the stochastic block model”. In: Journal of
Machine Learning Research 22.117 (2021), pp. 1–44.
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In the same paper, we reach our destination...

Theorem (Deng, Ling, amd Strohmer12)

Let p = α log n
n , q = β log n

n and assume
√
α−

√
β >

√
2. Then

there exists η = η(α, β) > 0 and σ ∈ {±1} such that with
probability 1− o(1),

√
2n(σu2)i ≥ η for i ≤ n

and √
2n(σu2)i ≤ −η for i ≥ n + 1.

12Deng, Ling, and Strohmer, “Strong consistency, graph laplacians, and the
stochastic block model”.
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