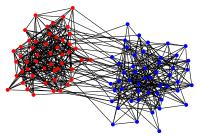
Matrix Concentration and Random Graphs

Sawyer Robertson

November 22, 2024 DOGSPOT Seminar

<ロ> (四) (四) (三) (三) (三)



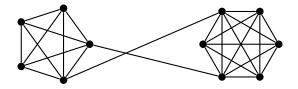
Our journey begins in 1973¹².

²Miroslav Fiedler. "Algebraic connectivity of graphs". In: *Czechoslovak* mathematical journal 23.2 (1973), pp. 298–305.

¹William E Donath and Alan J Hoffman. "Lower bounds for the partitioning of graphs". In: *IBM Journal of Research and Development* 17.5 (1973), pp. 420–425.

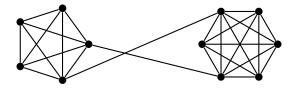
We are all pretty familiar with spectral clustering at this point.....

We are all pretty familiar with spectral clustering at this point.....



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We are all pretty familiar with spectral clustering at this point.....



If G has nice community structure, we can recover it using the eigenvector(s) of the graph Laplacian.

▲□▶▲□▶▲□▶▲□▶ □ のQの

Let $L = I - D^{-1/2}AD^{-1/2}$ be the normalized Laplacian.

Let $L = I - D^{-1/2}AD^{-1/2}$ be the normalized Laplacian.

$$\lambda_2 = \min_{f \perp 1} \frac{f^T L f}{f^T f}$$
$$= \min_{f \perp 1} \frac{\sum_{\{i,j\}} |f_i - f_j|^2}{\sum_i |f_i|^2 d_i}.$$

Let $L = I - D^{-1/2}AD^{-1/2}$ be the normalized Laplacian.

$$\lambda_2 = \min_{f \perp 1} \frac{f^T L f}{f^T f}$$
$$= \min_{f \perp 1} \frac{\sum_{\{i,j\}} |f_i - f_j|^2}{\sum_i |f_i|^2 d_i}.$$

The argmin which we write u_2 solves

$$Lu_2 = \lambda_2 u_2.$$

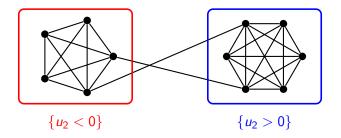
$vol(A, B) = \# \{\{i, j\} : i \in A, j \in B\}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\operatorname{vol}(A,B) = \# \{\{i,j\} : i \in A, j \in B\}$$

We have the normalized cut problem:

$$\min_{A,B\subseteq V} \frac{\operatorname{vol}(A,B)}{\operatorname{vol}(A,V)} + \frac{\operatorname{vol}(A,B)}{\operatorname{vol}(B,V)}$$



The sets $\{u_2 > 0\}$ and $\{u_2 < 0\}$ solve a relaxation of this problem.³

But is this consistent in a structural sense?

But is this consistent in a structural sense?

Suppose we have two (latent, planted) communities $A, B \subseteq V$ obtained from some model, and we put:

$$\widehat{A} = \{u_2 < 0\}$$
$$\widehat{B} = \{u_2 > 0\}$$

Can we guarantee \widehat{A} , A are close w.h.p.? Similarly for \widehat{B} .

This is a very difficult question because it requires pretty precise knowledge of the **entries** of u_2 in a random graph model⁴...

⁴Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. "Consistency of Spectral Clustering". In: *The Annals of Statistics* 36.2 (Apr. 2008): A Ref. 2

This is a very difficult question because it requires pretty precise knowledge of the **entries** of u_2 in a random graph model⁴...

To get to this destination, we start from scratch.

⁴Luxburg, Belkin, and Bousquet, "Consistency of Spectral Clustering". and Bousquet, "Consistency of Spectral Clustering".

This is a very difficult question because it requires pretty precise knowledge of the **entries** of u_2 in a random graph model⁴...

To get to this destination, we start from scratch.

What about A?

⁴Luxburg, Belkin, and Bousquet, "Consistency of Spectral Clustering". $= \circ \circ \circ \circ$

Definition (Inhomogeneous ER random graph)

Let $n \ge 2$ and $P \in \mathbb{R}^{n \times n}$ be an $n \times n$ symmetric matrix of probabilities $p_{ij} \in [0, 1]$. We assume $p_{ii} = 0$. We construct a random graph G as follows. Let G have vertex set $[n] = \{1, 2, ..., n\}$ and, for each $e = \{i, j\} = \in {[n] \choose 2}$, we add the e to G with probability p_{ij} . We say $G \sim G(n, P)$.

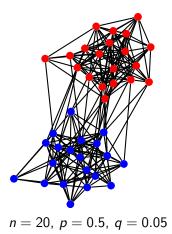
Example (Planted Community Model)

Let $A = \{1, ..., n\}$ and $B = \{n + 1, ..., 2n\}$ for some $n \ge 1$. Let $p, q \in [0, 1]$ and choose by convention $p \ge q$. Set:

$$p_{ij} = egin{cases} p & ext{ if } i,j \in A ext{ or } i,j \in B \ q & ext{ otherwise} \end{cases}$$

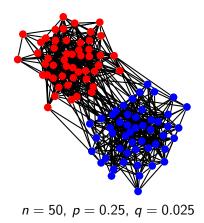
(日)(1)</

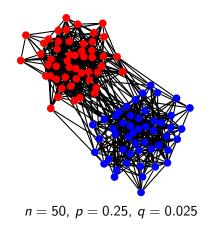
Also called the stochastic block model.



イロト イヨト イヨト イヨト

э





We can see this is a natural petri dish for community detection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Other examples of inhomogeneous ER graphs include:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Chung-Lu expected degree graphs
- Random dot product graphs

...

For
$$A \sim G(n, P)$$
, set \overline{A} :
 $\overline{A}_{ij} = \mathbb{E} (A_{ij}) = p_{ij}$
 $\overline{D}_{ii} = \sum_{j} \overline{A}_{ij} =: \overline{d}_{i}$

シック 単 (中本) (中本) (日)

For
$$A \sim G(n, P)$$
, set \overline{A} :
 $\overline{A}_{ij} = \mathbb{E} (A_{ij}) = p_{ij}$
 $\overline{D}_{ii} = \sum_{j} \overline{A}_{ij} =: \overline{d}_{i}$

and
$$\overline{L} = I - \overline{D}^{-1/2} \overline{AD}^{-1/2}$$
.

For
$$A \sim G(n, P)$$
, set \overline{A} :
 $\overline{A}_{ij} = \mathbb{E} (A_{ij}) = p_{ij}$
 $\overline{D}_{ii} = \sum_{j} \overline{A}_{ij} =: \overline{d}_{i}$
and $\overline{L} = I - \overline{D}^{-1/2} \overline{AD}^{-1/2}$.

These are adjacency and Laplacian matrices of weighted graphs.

We ask:

(ロ)、(型)、(E)、(E)、 E) の(()

⁵Always operator norm.

We ask:

When can we guarantee that $||A - \overline{A}||$ is small with high probability?⁵

⁵Always operator norm.

We ask:

When can we guarantee that $||A - \overline{A}||$ is small with high probability?⁵

The answer: roughly $O(\sqrt{\log n})$ provided the model is "not too sparse."

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

⁵Always operator norm.

Our journey picks up in 2009...

⁶Roberto Imbuzeiro Oliveira. "Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges". In: *arXiv preprint arXiv:0911.0600* (2009).

Our journey picks up in 2009...

Let
$$d = \min_i \overline{d}_i$$
, $\Delta = \max_i \overline{d}_i$.

⁶Oliveira, "Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges". $\Box \rightarrow \langle \Box \rangle + \langle \Box \rangle + \langle \Xi Z = \langle \Xi Z$

Our journey picks up in 2009...

Let
$$d = \min_i \overline{d}_i$$
, $\Delta = \max_i \overline{d}_i$.

Theorem (Oliveira $(2009)^6$)

For any c > 0 there exist C = C(c) > 0, independent of n, P, such that the following holds. If $\Delta > C \ln n$, then for all $n^{-c} \le \delta \le 1/2$,

$$\|A - \overline{A}\| \leq 4\sqrt{\Delta \ln(n/\delta)}$$

w.p. at least $1 - \delta$. If $d \ge C \ln n$, then for the same range of δ :

$$\|L - \overline{L}\| \le 14 \sqrt{\frac{\ln(4n/\delta)}{d}}$$

w.p. at least $1 - \delta$.

Chung and Radcliffe improve this two years later...

⁷Fan Chung and Mary Radcliffe. "On the spectra of general random graphs". In: the electronic journal of combinatorics (2011), P215-P215 = 5000

Chung and Radcliffe improve this two years later...

Theorem (Chung and Radcliffe $(2011)^7$)

Let $\epsilon > 0$ be fixed and suppose that for n sufficiently large, it holds $\Delta > \frac{4}{9} \log (2n/\epsilon)$. Then:

$$\|A - \overline{A}\| \le 4\sqrt{\Delta \log(2n/\epsilon)}$$

w.p. at least $1 - \epsilon$. Moreover there exists $k = k(\epsilon)$ such that if $d \ge k \log n$, then

$$\|L - \overline{L}\| \le 3\sqrt{\frac{3\log(4n/\epsilon)}{d}}$$

w.p. at least $1 - \epsilon$.

⁷Chung and Radcliffe, "On the spectra of general random graphs". () Solution of the spectra of general random graphs".

The proof of Chung and Radcliffe's version uses the following matrix Bernstein inequality.

⁸Joel A Tropp. "User-friendly tail bounds for sums of random matrices". In: Foundations of computational mathematics 12 (2012), pp. 389-434. (=) = 0000 The proof of Chung and Radcliffe's version uses the following matrix Bernstein inequality.

Theorem (Matrix Bernstein inequality⁸)

Let $B_1, B_2, ..., B_k$ be independent $n \times n$ random Hermitian matrices. Assume that $||B_i - \mathbb{E}(B_i)|| \le M$ for all i and set $\nu = ||\sum_{i=1}^k \operatorname{Var}(B_i)||$. Writing $B = \sum_{i=1}^k B_i$, we have that for any a > 0,

$$\mathbb{P}\left(\|B - \mathbb{E}(B)\| > a\right) \le 2n \exp\left\{-\frac{a^2}{2\nu + 2Ma/3}\right\}.$$
 (1.1)

⁸Tropp, "User-friendly tail bounds for sums of random matrices" \rightarrow \equiv $\bigcirc \land \bigcirc$

The proof of Chung and Radcliffe's version uses the following matrix Bernstein inequality.

Theorem (Matrix Bernstein inequality⁸)

Let $B_1, B_2, ..., B_k$ be independent $n \times n$ random Hermitian matrices. Assume that $||B_i - \mathbb{E}(B_i)|| \le M$ for all i and set $\nu = ||\sum_{i=1}^k \operatorname{Var}(B_i)||$. Writing $B = \sum_{i=1}^k B_i$, we have that for any a > 0,

$$\mathbb{P}\left(\|B - \mathbb{E}(B)\| > a\right) \le 2n \exp\left\{-\frac{a^2}{2\nu + 2Ma/3}\right\}.$$
 (1.1)

⁸Tropp, "User-friendly tail bounds for sums of random matrices" \rightarrow \equiv $\bigcirc \land \bigcirc$

A quick detour. What does $\|\boldsymbol{A}-\overline{\boldsymbol{A}}\|$ small get us?

A quick detour. What does $||A - \overline{A}||$ small get us?

Theorem (Weyl's inequality)

Let $B, C \in \mathbb{C}^{n \times n}$ be Hermitian matrices with eigenvalues $\lambda_k(\cdot)$ ordered ascending. Then

$$|\lambda_k(A) - \lambda_k(B)| \le \|A - B\|.$$

Usually $\lambda_k(\overline{A})$ and $\lambda_k(\overline{L})$ are easy to obtain.

For the planted community model, if $d = d_i = (n-1)p + nq$,

$$\overline{L} = \frac{1}{d} \begin{bmatrix} d & -p & \cdots & -p & -q & \cdots & -q \\ -p & d & \cdots & -p & -q & & \cdots & -q \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \ddots & \vdots \\ -p & -p & \cdots & d & -q & & \cdots & -q \\ -q & -q & \cdots & -q & d & -p & \cdots & -p \\ -q & -q & \cdots & -q & -p & d & \cdots & -p \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \ddots & \vdots \\ -q & -q & \cdots & -q & -p & -p & \cdots & d \end{bmatrix}$$

$$\lambda_k(\overline{L}) = 0, \frac{2nq}{d}, \frac{d+p}{d} \times (2n-1)$$

 $u_2 \propto [\mathbf{1}_n^T - \mathbf{1}_n^T]^T$

Theorem (Davis-Kahan Theorem⁹)

Let $B, \hat{B} \in \mathbb{R}^{n \times n}$ be symmetric, with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$ and $\hat{\lambda}_1 \leq \ldots \leq \hat{\lambda}_n$ respectively. Fix $j \in \{1, \ldots, n\}$, and assume that $\min(\lambda_j - \lambda_{j-1}, \lambda_{j+1} - \lambda_j) > 0$, where $\lambda_0 := -\infty$ and $\lambda_{n+1} := \infty$. If $v, \hat{v} \in \mathbb{R}^n$ satisfy $Bv = \lambda_j v$ and $\hat{B}\hat{v} = \hat{\lambda}_j \hat{v}$, then

$$\sin \Theta(\hat{\mathbf{v}}, \mathbf{v}) \leq rac{2\|\hat{B} - B\|}{\min(\lambda_{j-1} - \lambda_j, \lambda_j - \lambda_{j+1})}$$

Moreover, if $\hat{v}^T v \ge 0$, then

$$\|\hat{\mathbf{v}}-\mathbf{v}\| \leq \frac{2^{3/2}\|\hat{B}-B\|}{\min(\lambda_{j-1}-\lambda_j,\lambda_j-\lambda_{j+1})}.$$

⁹Yi Yu, Tengyao Wang, and Richard J Samworth. "A useful variant of the Davis–Kahan theorem for statisticians". In: *Biometrika* 102.2 (2015), pp. 315–323.

Theorem (Davis-Kahan Theorem⁹)

Let $B, \hat{B} \in \mathbb{R}^{n \times n}$ be symmetric, with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$ and $\hat{\lambda}_1 \leq \ldots \leq \hat{\lambda}_n$ respectively. Fix $j \in \{1, \ldots, n\}$, and assume that $\min(\lambda_j - \lambda_{j-1}, \lambda_{j+1} - \lambda_j) > 0$, where $\lambda_0 := -\infty$ and $\lambda_{n+1} := \infty$. If $v, \hat{v} \in \mathbb{R}^n$ satisfy $Bv = \lambda_j v$ and $\hat{B}\hat{v} = \hat{\lambda}_j \hat{v}$, then

$$\sin \Theta(\hat{\mathbf{v}}, \mathbf{v}) \leq \frac{2\|\hat{B} - B\|}{\min(\lambda_{j-1} - \lambda_j, \lambda_j - \lambda_{j+1})}$$

Moreover, if $\hat{v}^T v \ge 0$, then

$$\|\hat{\mathbf{v}}-\mathbf{v}\|\leq rac{2^{3/2}\|\hat{B}-B\|}{\min(\lambda_{j-1}-\lambda_j,\lambda_j-\lambda_{j+1})}.$$

So we can begin to get a glimpse of our destination...

⁹Yu, Wang, and Samworth, "A useful variant of the Davis–Kahan theorem for statisticians".

¹⁰Jing Lei and Alessandro Rinaldo. "Consistency of spectral clustering in stochastic block models". In: *The Annals of Statistics* (2015), pp.≡215–237. ≡ つへで

Theorem (Lei and Rinaldo¹⁰)

Let r > 0 be fixed. Assume that $n \max_{ij} p_{ij} \le s$ for $s \ge c \log n$ for some c > 0. Then there exists a constant C = C(r, c) such that

$$\|A - \overline{A}\| \le C\sqrt{s}$$

with probability at least $1 - n^{-r}$.

Theorem (Lei and Rinaldo¹⁰)

Let r > 0 be fixed. Assume that $n \max_{ij} p_{ij} \le s$ for $s \ge c \log n$ for some c > 0. Then there exists a constant C = C(r, c) such that

$$\|A - \overline{A}\| \leq C\sqrt{s}$$

with probability at least $1 - n^{-r}$.

Wonderfully clean theorem. The proof? Another story (all things considered not too bad). The catch?

Theorem (Lei and Rinaldo¹⁰)

Let r > 0 be fixed. Assume that $n \max_{ij} p_{ij} \le s$ for $s \ge c \log n$ for some c > 0. Then there exists a constant C = C(r, c) such that

$$\|A - \overline{A}\| \leq C\sqrt{s}$$

with probability at least $1 - n^{-r}$.

Wonderfully clean theorem. The proof? Another story (all things considered not too bad). The catch?

No L.

Finally, we reach 2020 with a paper of Deng, Ling, amd Strohmer which puts the matter to rest.

 Finally, we reach 2020 with a paper of Deng, Ling, amd Strohmer which puts the matter to rest.

Theorem (Deng, Ling, amd Strohmer¹¹)

Assume that $n \max_{ij} p_{ij} \ge c \log n$ for some $c \ge 1$. Then for any r > 0, there exists C = C(c, r) such that

$$\|L - \overline{L}\| \leq \frac{C(n \max_{ij} p_{ij})^{5/2}}{\min\{d_{\min}, d\}^3}$$

with probability at least $1 - n^{-r}$. Here d_{\min} is the minimum degree of A.

¹¹Deng, Ling, and Strohmer, "Strong consistency, graph laplacians, and the stochastic block model".

Finally, we reach 2020 with a paper of Deng, Ling, amd Strohmer which puts the matter to rest.

Theorem (Deng, Ling, amd Strohmer¹¹)

Assume that $n \max_{ij} p_{ij} \ge c \log n$ for some $c \ge 1$. Then for any r > 0, there exists C = C(c, r) such that

$$\|L - \overline{L}\| \leq \frac{C(n \max_{ij} p_{ij})^{5/2}}{\min\{d_{\min}, d\}^3}$$

with probability at least $1 - n^{-r}$. Here d_{\min} is the minimum degree of A.

This bound needs to be de-randomized to be useful but is strong otherwise.

In the same paper, we reach our destination...

¹²Deng, Ling, and Strohmer, "Strong consistency, graph laplacians, and the stochastic block model".

In the same paper, we reach our destination...

Theorem (Deng, Ling, and Strohmer¹²) Let $p = \alpha \frac{\log n}{n}$, $q = \beta \frac{\log n}{n}$ and assume $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$. Then there exists $\eta = \eta(\alpha, \beta) > 0$ and $\sigma \in \{\pm 1\}$ such that with probability 1 - o(1),

$$\sqrt{2n}(\sigma u_2)_i \geq \eta$$
 for $i \leq n$

and

$$\sqrt{2n}(\sigma u_2)_i \leq -\eta$$
 for $i \geq n+1$.

¹²Deng, Ling, and Strohmer, "Strong consistency, graph laplacians, and the stochastic block model".