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Key Themes

1. As we have seen many times, a common framework for understanding
large or complex datasets is through graph representations obtained
through various means and pipelines.

2. Sometimes it’s just not enough to encode adjacency (and thereby losing
features or coordinates); or the adjacency structure isn’t super useful for
what we’re trying to learn (e.g., webpage datasets, “low homophily").

3. The Graph Connection Laplacian is a sort of manifold-aware Laplacian
matrix which allows one to encode local information about deviations of
features and/or embedding coordinates directly into the graph structure.

4. Lately we have been particularly interested in some new and interesting
foundational theory for this setting, motivated simultaneously by its deep
roots in algebraic graph theory and some intriguing new directions that
have opened up in the graph neural network literature.
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Connection Graphs: Two Ways

▶ Given some data X ∈ Rn×p where
typically p ≫ n,

1. For each xi , xj , add {i , j} to the
graph when ∥xi − xj ∥ is small,

2. For each xi ∈ Rp , apply PCA to
the features in the neighborhood
of xi to get a “local view," and
thereby reduce the features to a
common dimension d for all
nodes,

3. for each {i , j} try to best align
the reduced features via a
Procrustes problem and obtain a
rotation matrix Oij ∈ O(d).

▶ Thus obtain both a
proximity-based graph
representation of the data
G = (V , E , w), as well as a map
σ : E → O(d).4

4Amit Singer and H-T Wu. “Vector diffusion maps and the connection Laplacian”. In:
Communications on pure and applied mathematics 65.8 (2012).
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Connection Graphs: Two Ways

▶ Another perspective is a bit more layered.
▶ Signed graphs associate a ±1 value to each edge in a given graph; these

data back to the 1950s5, and arise in, e.g., social network models;

▶ Magnetic Graphs associate a U(1) value to each edge in a given graph;
these appeared in the early 1990s6 and have found use in lots of GNN
papers;

▶ Connection Graphs, as we have seen, associate a O(d) value to each
edge in a given graph; these originated in the early 2010s7 and have been
used in the Cryo EM problem, as well as Sheaf neural networks

▶ All of these are instances of voltage graphs (which consider the umbrella
case of a general group), and there is some interest from algebraic graph
theorists here

5Dorwin Cartwright and Frank Harary. “Structural balance: a generalization of Heider’s
theory.”. In: Psychological review 63.5 (1956).

6Elliott H Lieb and Michael Loss. “Fluxes, Laplacians, and Kasteleyn’s theorem”. In: Statistical
Mechanics: Selecta of Elliott H. Lieb. Springer, 1993.

7Singer and Wu, “Vector diffusion maps and the connection Laplacian”.
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Some important matrices

▶ Given G a connected, finite, undirected graph; A connection is any map
σ : E → O(d), and a pair (G , σ) is called a connection graph.

Connection Incidence Matrix
The connection graph incidence matrix is given by the nd × md block matrix:

B = (Bie ∈ Rd×d )i∈V ,e∈E , Bie =

{
Id if e = (i, ·)
−σT

e if e = (·, i)
0d otherwise

Connection Laplacian Matrix
If (G = (V , E), σ) is a connection graph, the connection Laplacian matrix is the nd × nd block
matrix:

L = (Lij ∈ Rd×d )n
i,j=1, Lij =

{
di Id if i = j
−wij σij if i ∼ j
0d otherwise

.

(L = BWBT where W is a block-diagonal matrix of edge weights).

▶ L is positive semidefinite, symmetric, and again has a full spectral
decomposition.
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A sampling of results I

▶ The synchronization problem can
be realized as an optimization
problem for vector fields on
connection graphs.

inf
f :V →Sd−1

∑
(i,j)∈E

∥f (i) − σij f (j)∥2
2

inf
F :V →O(d)

∑
(i,j)∈E

∥F (i) − σijF (j)∥2
F

▶ Think: how best can we globally
align our local views? Either with
vectors (the Sd−1 case), or entire
frames (the O(d) case).

▶ Bandeira, Singer, and Spielman8

obtain Cheeger-type inequalities

which relate the optimal
synchronization values to the
spectral gap of L, and provide
spectral approximations via linearly
relaxed versions

8Afonso S Bandeira, Amit Singer, and Daniel A Spielman. “A Cheeger inequality for the graph
connection Laplacian”. In: SIAM Journal on Matrix Analysis and Applications 34.4 (2013).
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A sampling of results II

▶ Effective resistance on connection graphs has also received a bit of
attention.

▶ Recall that for nodes i , j ∈ V , the effective resistance
rij = (δi − δj)T L†(δi − δj) defines a metric on the nodes which can be used
for sparsification, nodal embeddings, and beyond.

▶ Chung, Kempton, and Zhao9 looked at this in the setting of connection
graphs and edge ranking.

▶ Cloninger et al.10 revisited effective resistance with a new approach related
to random walk-based mean rotations.

9Fan Chung, Wenbo Zhao, and Mark Kempton. “Ranking and sparsifying a connection graph”.
In: Internet Mathematics 10.1-2 (2014).

10Alex Cloninger et al. “Random Walks, Conductance, and Resistance for the Connection Graph
Laplacian”. In: SIAM Journal on Matrix Analysis and Applications, To Appear. (2023).
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Minimum Cost Flows
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OT on Graphs

▶ Optimal transport is a mathematical framework for finding the most
efficient way to transport one distribution of mass to another, minimizing a
cost function that quantifies the expense of moving each unit of goods.11

▶ Loosely speaking one distribution is an initial location of the mass, and the
second is a prescribed location for where it is to be deposited; and
Wasserstein distance is the optimal cost to transport one to the other with
respect to some ground metric.

▶ Let P(G) =
{

α ∈ Rn : αi ≥ 0,
∑n

i=1 αi = 1
}

be the simplex of probability
densities on G .

Earth-mover’s distance
Let α, β ∈ P(G). Then the 1-Wasserstein, or Earth-mover’s distance between α, β is given by the
following LP:

W1(α, β) = inf

{∑
i,j∈V

dij πij : π ∈ Rn×n
, π ≥ 0, π1n = α, 1T

n π = β
T

}
, (2.1)

where dij is the shortest-path distance between two nodes i, j ∈ V .

11Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport”. In: Center for
Research in Economics and Statistics Working Papers 1.2017-86 (2017).
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Minimum Cost Flows

▶ On graphs (or rather, with shortest-path metric) the previous problem can
be realized as a min cost flow problem. A proof of equivalence can be
found in, e.g.,12.

Beckmann Problem on Graphs

W1(α, β) = inf

{∑
e∈E′

w(e)|J(e)| : J ∈ Rm
, BJ = α − β

}
.

▶ The objective being nonsmooth and minimizers being nonunique, solving
this is nontrivial. Time complexity of exact solutions are roughly on the
order of O(n3 log(n))13; there are many methods for approximate and/or
regularized solutions with varying time complexities and error rates,
classical methods are roughly O(n3).

▶ A solution is to quadratically regularize the problem and use duality. More
on this momentarily.

12Peyré, Cuturi, et al., “Computational optimal transport”.
13James B Orlin, Serge A Plotkin, and Éva Tardos. “Polynomial dual network simplex

algorithms”. In: Mathematical programming 60.1 (1993).
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Some nuance

▶ W1 on graphs is pretty versatile; can be used in unsupervised learning
problems, graph Ricci curvature (a can of worms in and of itself), image
processing, ...

▶ What about flows on connection graphs?

▶ A subtle detail from before becomes very important: on classical graphs,
the linear system BJ = α − β is feasible if and only if α, β have the same
total mass.

▶ On connection graphs, if α, β : V → Rd are vector fields representing
supply and demand, BJ = α − β is not always feasible.
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A simple counterexample

1 2 3
σ = 1 σ = -1

α(1) = 1 β(3) = 1

Figure: Case where α, β have no feasible flow and equal mass. Here, for simplicity,
d = 1 and our connection is just a ±1 signature. As α is “pushed" in the direction of
β, the sign is flipped, which is therefore not compatible. β(3) = −1 is feasible.
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More food for thought

1

2

3

4
σ = -1

α(1) = 1 β(4) = 0.5

Figure: Case where α, β do not have equal mass but the problem is feasible. Take
J = 0.25 on the upper path and J = 0.75 on the lower path, and BJ = α − β.
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The Crux of the Problem

▶ We have illuminated a fundamental concept; that min cost flows on
connection graphs are a bit weird: lack of feasible solutions on occasion,
ability to have destructive interference from a flow.

Beckmann Problem for Connection Graphs
Let α, β ∈ Rnd be any vector-valued supply and demand functions on V . We define

Wσ
1 (α, β) = inf

{∑
e∈E′

w(e)∥J(e)∥2 : J ∈ Rmd
, BJ = α − β

}
, (2.2)

where Wσ
1 (α, β) = ∞ if BJ = α − β has no solution.

▶ When is this feasible? How can we solve it?
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▶ Define Pd(G) =
{

α ∈ Rn×d : αij ≥ 0,
∑n

i=1 αi,: = 1d
}

.

▶ A connection σ is said to be consistent whenever the product of
signatures along any cycle in the graph is Id.

▶ A connection σ is said to be inconsistent if it is not consistent, and
absolutely inconsistent if the the subgroup of O(d) generated by product
of signatures along all cycles in the graph has no nontrivial invariant vector
in Rd (and, among other things, the kernel of L is trivial).

Theorem (SR, DK, GM, AC 2023)
If (G, σ) is connected and absolutely inconsistent then Wσ

1 (α, β) is always feasible. For any
non-absolutely inconsistent connection Laplacian L there is a block diagonal orthogonal matrix
U = diag(u1, . . . , un) ∈ O(nd), where ui ∈ O(d), such that for the modified connection Laplacian
UT LU, the problem Wσ′

1 (α, β) is always feasible when α, β ∈ Pd (G).
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Regularization
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On classical graphs

▶ Adding a bit of regularization to an ℓ1 problem has lots of advantages:
solutions are often unique owing to strict convexity (depending on the
regularizer), and primal/dual methods often afford otherwise inaccessible
solution methods

Regularized Beckmann Problem on Graphs; Essid, Solomon 2018
Let λ > 0 be fixed, and define

W1,λ(α, β) = inf
J∈Rm

{∑
e∈E′

w(e)|J(e)| +
λ

2
∥J(e)∥2

2 : BJ = α − β

}
.

This problem admits a convex dual and the optimal values coincide:

W1,λ(α, β) = sup
ϕ∈Rn

[
ϕ

T (α − β) −
1

2λ
∥(BT

ϕ(e) − we)+∥2
2

]
where for x ∈ Rm, (x)+ = x1x≥0. Moreover, duality correspondence holds: we can write down an
optimal solution for the primal if an optimal solution for the dual is found.a

aMontacer Essid and Justin Solomon. “Quadratically regularized optimal transport on graphs”.
In: SIAM Journal on Scientific Computing 40.4 (2018).
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Adapting for Connection Graphs

Theorem (SR, DK, GM, AC 2023)
Let (G, σ) be a connected connection graph. Let α, β ∈ Pd (G). Then strong duality holds for the
following problems,

Wσ,λ
1 (α, β) = inf

J∈ℓ2(E′ ;Rd )

{∑
e∈E′

w(e)∥J(e)∥2 +
λ

2
∥J(e)∥2

2 : div(J) = α − β

}
(3.1)

= sup
ϕ∈ℓ2(V ;Rd )

{
ϕ

T (α − β) −
1

2λ

∑
e∈E′

χe(ϕ)(
∥∥(BT

ϕ)(e)
∥∥

2
− w(e))2

}
(3.2)

where

χe(ϕ) :=

{
1 if

∥∥(BT ϕ)(e)
∥∥

2
> w(e)

0 otherwise
. (3.3)

Moreover, if the primal is feasible and ϕ maximizes the dual then the optimal
primal J(ϕ) is given by

[J(ϕ)](e) = −χe(ϕ)

(∥∥(BT ϕ)(e)
∥∥

2
− w(e)

λ

)
(BT ϕ)(e)

∥(BT ϕ)(e)∥2
. (3.4)
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Example 1
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Example 2
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