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Boundary Value Problems and Green’s Functions on Magnetic Graphs
Sawyer Robertson, University of Oklahoma

What is a magnetic graph?
Let G = (V ,E ) be a finite simple graph, with vertex set V and an edge
set G . The set of oriented edges is given by

E or(G ) := {(u, v), (v , u) : (u, v) ∈ E}.
A signature on G is a map

σ : E or(G )→ {z ∈ C : |z | = 1} : (u, v) 7→ σuv

satisfying σuv = σ−1
vu = σvu. A signed or magnetic graph is a graph G

equipped a signature structure.

Discrete Laplacians
Graphs serve as extremely useful discrete analogues of continuous
domains, often serving as good settings for numerical approximations to
solutions of partial differential equations. We investigate the discrete
cousin of the classical Laplacian operator, in both unsigned and signed
cases. Let G = (V ,E ) be a finite simple graph, and fix an enumeration
of the vertex set V = {vi}ni=1. The combinatorial or discrete Laplacian
of the graph G is the n × n matrix defined by

LG (i , j) =

{ dvi i = j
−1 vi ∼ vj
0 otherwise

where (i) dvi means the degree of or number of vertices adjacent to the
vertex vi , and (ii) vi ∼ vj means the two vertices are adjacent. If we have
f : V → C, we may write it as a column vector with respect to the fixed
enumeration. The Laplacian of f is then given by the matrix product

Lf = (LG )f .

We introduce a boundary value problem on a graph. Suppose we have a
graph G , and a proper subgraph H . We define LH to be the principal
submatrix of LG indexed by the rows and columns of H , with respect to
the fixed enumeration. Let

V ∗(H) :=
{
x ∈ V (G ) : {x , y} ∈ E (G ) y ∈ V (H), x /∈ H

}
and let H be the subgraph in G induced by V (H) ∪ V ∗(H). Let
f : V ∗(H)→ C, g : V (H)→ C be given. The Poisson problem is to
find u : V (H) ∪ V ∗(H)→ C satisfying{ Lu(v) = g(v) v ∈ V (H)

u(v) = f (v) v ∈ V ∗(H)

The case when g ≡ 0 is called the Dirichlet Problem.

The Magnetic Setting
Suppose we have a graph G with a proper subgraph H , defined as above
with enumerated vertex set, with a signature σ. We work in the space of
functions

`2(V (G )) := {f : V (G )→ C}
which is naturally isomorphic to C(# vertices in G ), and inherits the natural
inner product structure. Define the magnetic Laplacian of G to be the
n × n matrix given by

LG
σ (i , j) =

{ dvi i = j
−σvivj vi ∼ vj

0 otherwise

noting that this matrix is Hermitian. We define LHσ to be the principal
submatrix of LG

σ indexed by the rows and columns of H , with respect to
the fixed enumeration. Define the normal derivative to be the operator
∂
∂η on `2(V (H)) given by

∂f

∂η
(x) =

∑
y∼x

y∈V (H)

f (x)− σxy f (y).

Abstract
Let G be a finite simple graph. We impose on G the additional structure of a signature, a function which maps edges into the set of complex numbers
of modulus 1. This induces a second-order difference operator for complex-valued functions defined on the vertex set of G which is a discrete analogue
of the classical Laplacian, and consequently discrete boundary value problems on proper and sufficiently connected subgraphs of G . We construct a
solution to Poisson type problems and explore some applications, including the role of discrete Green’s functions in constructions of solutions. These
structures and problems arise in many physical models where discrete domains (namely, graphs) can more efficiently describe continuous regions; in
particular, those of quantum mechanics, where a signature structure helps to describe atomic structures with the presence of magnetic potential.

Illustrating the Discrete Dirichlet Problem using Mathematica

Figure: The graph G , with V ∗(H) in yellow, and
negatively signed edges dashed.

We illustrate solutions to the combinatorial
and magnetic Dirichlet problems subjected to the same boundary condition.
Our domain of interest is an 8× 8 lattice, denoted G , and we study the Dirichlet
problem on the subgraph defined to be the 6× 6 interior of the lattice, denoted
H (see Discrete Laplacians). We shall pose both combinatorial and magnetic
problems on this domain; in the case of the magnetic problem, we define
a signature σ on H by setting σ = 1 on horizontal edges and σ = −1 on vertical
edges. Let us define a boundary condition in the form of a sinusoidal curve
f , created by wrapping one period of the sine function around the boundary.

Figure: The boundary function f , with discrete plot points joined to form a curve.

We wish to identify solutions u, v , defined on G to the following problems:{
(Lu)(x) = 0 x ∈ V (H)
u(x) = f (x) x ∈ V ∗(H)

(1)

{
(LG

σ v)(x) = 0 x ∈ V (H)
v(x) = f (x) x ∈ V ∗(H)

(2)

Problem (1) is the combinatorial problem which neglects signature, and problem (2) is the magnetic problem. First, we
consider (1). To find the function u, we use techniques seen in Discrete Green’s Functions by Chung similar to the magnetic
solution to (4). Using the DiscretePlot3D tool in Mathematica, we have

(a) The solution u defined on the whole lattice, plotted discretely
(b) The solution u, defined on the whole lattice, with plot points joined as
a surface

Next we consider the magnetic problem (2). Using the techniques described in the results, we are able to produce the solution
v , illustrated below using DiscretePlot3D in Mathematica:

(a) The solution v defined on the whole lattice, plotted discretely
(b) The solution v , defined on the whole lattice, with plot points joined as
a surface

Result 1: Solution to the Magnetic Poisson Problem
Suppose G is a finite, simple signed graph, and H is a proper, connected
subgraph of G . Given g ∈ `2(V (H)), f ∈ `2(V ∗(H)), we wish to find a
function u ∈ `2(V (H)) so that{

(LH
σ u)(v) = g(v) v ∈ V (H)
u(v) = f (v) v ∈ V ∗(H)

We obtain u by finding u1, u2 ∈ `2(V (H)) which solve{
(LH

σ u1)(v) = 0 v ∈ V (H)
u1(v) = f (v) v ∈ V ∗(H)

(3)

{
(LH

σ u2)(v) = g(v) v ∈ V (H)
u2(v) = 0 v ∈ V ∗(H)

(4)

so that u = u1 + u2. Under our assumptions on the domains, unique
solutions will exist. We have two theorems giving constructions of the
solutions.
Theorem
Let {φi}1≤i≤m be an orthonormal basis of `2(V (H)) of eigenvectors of
LHσ , with associated eigenvalues {λi}1≤i≤m. We extend each φi to φ̃i
agreeing with φi on V (H) and φ̃i ≡ 0 on V ∗(H) for 1 ≤ i ≤ m. The
solution to (3) is given by

u1(z) =

{ ∑m
i=1

φi(z)
λi

[∑
x∈V ∗(H)

∂φ̃i
∂η (x)f (x)

]
z ∈ V (H)

f (z) z ∈ V ∗(H)

Theorem
The matrix LHσ is invertible, and the solution to (4) is given by

u2(z) =

{ (
(LHσ )

−1
g
)

(z) z ∈ V (H)
0 z ∈ V ∗(H)

The matrix (LHσ )−1 is a magnetic Green’s function, in the sense that it is
fundamental representation tool in the solution boundary value problem,
both theoretically and in practice.

Result 2: Magnetic Green Identities
We develop two discrete Green’s identities, which were funamental in the
proofs of the preceding theorems. Let G ,H be as in the previous result.
Theorem
Let f , g ∈ `2(V (H)). We have∑
{x ,y}∈E (H)

(
f (x)σxy − f (y)

)(
g(x)σyx− g(y)

)
−
∑

x∈V (H)

f (x)LH
σ g(x) =

∑
x∈V ∗(H)

f (x)
∂g

∂η
(x)

Theorem
Let f , g ∈ `2(V (H)). We have∑

x∈V (H)

LH
σ f (x)g(x)− f (x)LH

σ g(x) =
∑

x∈V ∗(H)

f (x)
∂g

∂η
(x)− ∂f

∂η
(x)g(x)
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