
HARNACK INEQUALITY FOR MAGNETIC GRAPHS

SAWYER JACK ROBERTSON

Abstract. For magnetic graphs satisfying connection curvature dimension inequality CDσ(n, κ), we

prove a Harnack-type inequality for eigenfunctions of the graph magnetic Laplace operator in the manner

of work done by Chung, Lin, Yau in 2014. Then we look at two applications; first a lower bound for the

least eigenvalue in terms of curvature and extremal path/degree quantities, then to the magnetic Cheeger

number of the graph.

1. Introduction & Preliminaries

1.1. Classical structures. We consider a graph of the form G = (V,E, p) where V is the finite set of
vertices, E a set of undirected edges, and p is an edge weight function. The edges are undirected, and we
assume no loops (i.e., edges of the form {x, x}) or multiple edges. The weight of an edge xy is denoted
pxy and is assumed nonnegative and symmetric; the degree of a vertex x, denoted dx, is the sum of all
weights of edges incident to x. Adjacency between vertices x, y is denoted x ∼ y, and to avoid trivial
complications, we require no isolated vertices (i.e., dx > 0 for each x ∈ V ).

The oriented edge set is the set of all pairs of adjacent vertices:

Eor := {(x, y), (y, x) : x, y ∈ V, x ∼ y}.

Letting V C and V R denote the vector spaces of complex- and real-valued functions defined on V , re-
spectively, the graph Laplace operator ∆ : V C → V C is defined by

(1) (∆f)(x) :=
1

dx

∑
y∼x

pxy(f(y)− f(x)).

A nonzero function f ∈ V C is said to be a harmonic eigenfunction of −∆ with eigenvalue λ provided
(−∆)f = λf . Note that −∆ will have nonnegative real eigenvalues since it is Hermitian and positive
semidefinite.

To define Ricci curvature of a graph, we follow in the convention of [6] as adapted from work by Bakry,
Emery[1]. This is done by defining a first curvature operator, which is the billinear operator defined
Γ : V C × V C → V C by the formula

2Γ(f, g) := ∆(fg)− f∆g −∆fg,

which may also be expressed pointwise by

(2) 2 [Γ(f, g)] (x) =
1

dx

∑
y∼x

pxy(f(y)− f(x))(g(y)− g(x)).

Note the conjugate symmetry of the operator. Setting for convenience Γ(f) := Γ(f, f) we can define
|∇f |2(x) via

(3) 2 [Γ(f)] (x) :=
1

dx

∑
y∼x

pxy|f(y)− f(x)|2 := |∇f |2(x).
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This will be called the energy of f at x. The Ricci curvature operator, as in [1, 4, 6], is defined by
iterating the first curvature operator; Γ2 : V C × V C → V C is in turn defined by

(4) 2Γ2(f, g) := ∆Γ(f, g)− Γ(f,∆g)− Γ(∆f, g).

A function f ∈ V C is said to satisfy the curvature-dimension type inequality CD(n, κ) for n ∈ (1,∞)
and κ ∈ R\{0} if

(5) Γ2(f, f) ≥ 1

n
|∆f |2 + κΓ(f, f)

at each vertex x ∈ V . If this holds for every f ∈ V C then we say that G satisfies CD(n, κ). If CD(n, κ)
holds for each f in some class of functions S ⊂ V C, then we say G satisfies the S-weak curvature
dimension inequality CD(n, κ, S).

1.2. Magnetic structures. In general, one can consider the analysis of functions f : V → Fd where
F = R or C and d ≥ 1 is some desired dimension; in turn, a graph connection or signature is a map
σ : Eor → Od where Od is the orthogonal group of appropriate dimension, satisfying σyx = σ−1xy . In this
paper, we will restrict the scope to the case where d = 1 and the signature σ takes values in a cyclic
group S1

` := {z ∈ C : z` = 1} for some ` ≥ 1; pairs (G, σ) of this form are often called magnetic graphs.
A signature σ taking values in S1

` will be called entire if its range generates all of S1
` ; equivalently, if its

range does not lie within a proper subgroup of S1
` . The magnetic girth of a magnetic graph, denoted gσ,

is defined to be the smallest directed cycle with the property that the product of the signature values
along the edges of the cycle generates the group S1

` . If the signature of a magnetic graph is not entire, or
if no such cycle exists, gσ :=∞. A magnetic graph (G, σ) is called balanced provided that the product
of the values of the signature along any (directed) cycle is 1; otherwise, G is unbalanced.

We define the magnetic Laplace operator by ∆σ : V C → V C via

(6) (∆σ)f(x) =
1

dx

∑
y∼x

pxy(σxyf(y)− f(x)),

As before, −∆σ will have nonnegative real eigenvalues. We can use the magnetic Laplace operator
to approach the notion of Ricci curvature in the same manner as before, but taking into account the
signature structure, following [7]. The first magnetic curvature operator Γσ is the billinear operator
defined in the one-dimensional case by

(7) 2Γσ(f, g) := ∆σ(fg)− f
(
∆σg

)
− (∆σf) g,

with the magnetic Ricci curvature operator given by

(8) 2Γσ2 (f, g) := ∆Γσ(f, g)− Γσ(f,∆σg)− Γσ(∆σf, g).

In higher dimensions, Liu, et al. [7, Eq. 1.17] give more general definitions of the magnetic curvature;
this is done in a natural manner by taking vector, rather than scalar, products.

Setting for convenience Γσ(f) := Γσ(f, f) we can define |∇σf |2(x) via

(9) 2 [Γσ(f)] (x) :=
1

dx

∑
y∼x

pxy|σxyf(y)− f(x)|2 := |∇σf |2(x).

f ∈ V C is said to satisfy the magnetic curvature-dimension type inequality CDσ(n, κ) for
n ∈ (1,∞) and κ ∈ R\{0} if

(10) Γσ2 (f, f) ≥ 1

n
|∆σf |2 + κΓσ(f, f).

(G, σ) is said to satisfy CDσ(n, κ) if the preceding holds for each f ∈ V C.
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If (G, σ) is a magnetic graph, and σ takes values in a finite cyclic group S1
` , we can define an associated

combinatorial graph Ĝ = (V̂ , Ê, p) called the lift or covering graph, whose vertices are given by V̂ =
V × S1

` , and whose edges are defined via the relation

(x1, ξ1) ∼ (x2, ξ2) ⇐⇒ x1 ∼ x2 and ξ2 = ξ1σx1x2 ,

with p(x1,ξ1),(x2,ξ2) := px1x2 . We also define the vector space of functions V̂ C consisting of those defined
on the vertices of the lift and taking complex values. When the context has fixed a magnetic graph

(G, σ), the Laplacian of its lift is denoted ∆̂.
Before proceeding it will be advantageous to collect a few straightforward facts about how properties

and structures of a magnetic graph relate to those on the lift.

Lemma 1.1. Suppose (G, σ) is an connected unbalanced magnetic graph with an entire signature σ

taking values in S1
` . Suppose G has diameter D, magnetic girth gσ <∞, and Ĝ has diameter D̂. Then

it holds

D̂ ≤ 2D + `gσ.

Proof. As a preliminary note, suppose one has an oriented path in G of length n expressed as an ordered

list of vertices P = (x0, x1, . . . , xn). By the lift of P initiating at level ξ0 ∈ S1
` , which we denote P̂ξ0 , we

mean the path in Ĝ given by the ordered list of vertices

P̂ξ0 :=

(
(x0, ξ0), (x1, ξ0σx0x1), . . . (xn, ξ0

n−1∏
i=0

σxixi+1
)

)
.

Now suppose one has two distinct vertices in Ĝ, say, (y1, ξ1), (y2, ξ2) ∈ V̂ . Let C be a directed cycle in

G realizing the magnetic girth of G, with signature product ω and length gσ, containing the vertex y∗.

Construct a directed path P1 in G connecting y1 to y∗, and another directed path P2 connecting y∗ to

y2. Let ω1, ω2 denote the products of the signature values along the paths P1, P2 resp.. Since σ is entire,

find an integer m ≥ 0 for which ωm = ξ2ξ
−1
1 ω−11 ω−12 . Now form a path P ∗ by concatenating in order

P1, then m copies of C, followed by P2. The product of the signature values along this path is ξ2ξ
−1
1 by

design, and it has length at most 2D + gσ`. P̂ ∗ξ1 connects (y1, ξ1) and (y2, ξ2) as desired. �

Suppose G is a cycle on 2n vertices, with signature equal to 1 everywhere except a single edge where
it is equal to a primitive root in S1

` . Then in this example gσ = 2n, D = n, so Lemma 1.1 supplies the

estimate D̂ ≤ 2n + n`. One computes directly that D̂ = (2n)(`/2) = n`, so the preceding estimate is
sharp in its highest order terms.

Lemma 1.2. Suppose (G, σ) is an unbalanced magnetic graph, with an entire signature σ taking values

in a finite cyclic group S1
` . Then Ĝ is connected.

The verification of this lemma is straightforward, it being worthwhile to note that the condition on
the range of the signature is more cosmetic than substantive; though a formality, dropping it can lead
to disconnected lifts associated with unbalanced magnetic graphs.

A useful tool is the lift embedding transformation ̂ : V C → V̂ C defined by f̂(x, ξ) := ξf(x). The

image of the lift embedding transformation will be denoted W ⊂ V̂ C.
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Lemma 1.3. Suppose (G, σ) is a magnetic graph. For each f ∈ V C it holds

(i) |∇f̂ |2(x, ξ) = |∇σf |2(x)

(ii) (∆̂f̂)(x, ξ) = ξ(∆σf)(x).

In [7, 3.7], the authors obtained the following relationship between the CD(n, κ) inequality for a
covering graph and the CDσ(n, κ) inequality for the original connection graph. We will rephrase here,
adapted to this terminology, for completeness:

Lemma 1.4. Let (G, σ) be a magnetic graph. If Ĝ satisfies CD(n, κ) then G satisfies CDσ(n, κ).

We have the following two lemmas giving a partial converse to Lemma 1.4.

Lemma 1.5. Let (G, σ) be a magnetic graph. If f ∈ V C satisfies CDσ(n, κ) then f̂ satisfies CD(n, κ).

Lemma 1.6. Let (G, σ) be a magnetic graph. If G satisfies CDσ(n, κ), then Ĝ satisfies the W -weak

curvature dimension inequality CD(n, κ,W ).

The proof of Lemma 1.5 is routine, relying on Lemma 1.3, and Lemma 1.6 follows immediately
thereafter.

Lemma 1.7. Suppose (G, σ) is a magnetic graph. If f is an eigenfunction for ∆σ with eigenvalue λ

then f̂ is an eigenfunction for ∆̂ with eigenvalue λ.

Again, the proof of Lemma 1.7 is routine, relying on Lemma 1.3.

1.3. Summary of results. This paper is an adaptation of the Harnack inequality of Chung, Lin,
Yau[4, Thm. 3.3] to eigenfunctions of the magnetic Laplace operator for simple, connected, unbalanced
magnetic graphs. They proved that for simple connected graphs satisfying the curvature dimension
inequality CD(n, κ), the following holds at each x ∈ V :

(11)
1

dx

∑
y∼x

|f(y)− f(x)|2 ≤
((

8− 2

n

)
λ− 4κ

)
max
z∈V
|f |2(z).

where f is any eigenfunction of −∆ with nontrivial eigenvalue λ > 0. We supply in section 2 a proof
of the same inequality extended to eigenfunctions of f : V → C of −∆, and apply this result to the lift
associated to a simple, connected, unbalanced magnetic graph satisfying CDσ(n, κ) to obtain, at each
x ∈ V ,

1

dx

∑
y∼x

|f(x)− σxyf(y)|2 ≤
((

8− 2

n

)
λ− 4κ

)
max
z∈V
|f |2(z).

where f : V → C is any eigenfunction of −∆σ with nontrivial eigenvalue λ > 0. In section 3, we discuss
two applications. First, invoking an argument in [4, Thm. 3.5], we derive the eigenvalue bound

λ ≥ 1 + 4κd (2D + `gσ)2

d(8− 2
n
) (2 + `gσ)2

for the least eigenvalue of −∆σ, for a simple magnetic graph with signature in the cyclic group S1
` of

order ` satisfying CDσ(n, κ), with maximum degree d, and diameter D. The second application is a
lower bound on the first magnetic Cheeger number hσ1 , c.f. definition (3.4), of the graph:

1 + 4κd (2D + `gσ)2

d(16− 4
n
) (2D + `gσ)2

≤ hσ1 .
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One can heuristically think of the first Cheeger number as quantifying the extent to which the graph is
balanced. This can be made precise, see e.g.[5, Thm. 6.4].

Worth noting is that the Harnack inequality in equation (11) was strengthened by Chung and Yau[3]
in 2017. It remains open whether this new result can be formulated for the connection graph case.

2. Harnack inequality

The following arguments are made in the same manner as Chung, Lin, Yau[4, Lemma 3.1, Thm.
3.2], with small adjustments made throughout to account for the complexity of the function values. We
provide the computations for completeness.

Lemma 2.1. Let G be a finite connected graph and suppose f ∈ V C satisfies CD(n, κ). Then at each

vertex x ∈ V ,(
4

n
− 2

)
|∆f(x)|2 + (2 + 2κ)|∇f |2(x) ≤ 1

dx

∑
y∼x

pxy
dy

∑
z∼y

pyz|f(x)− 2f(y) + f(z)|2.

Proof. First we compute the Laplacian of Γ(f):

2∆ [Γ(f)] (x) =
1

dx

∑
y∼x

pxy [Γ(f)(y)− Γ(f)(x)] =
1

dx

∑
y∼x

pxy
[
|∇f |2(y)− |∇f |2(x)

]
=

1

dx

∑
y∼x

pxy
dy

∑
z∼y

pyz
[
|f(z)− f(y)|2 − |f(y)− f(x)|2

]
Using the straightforward expansion

|f(z)− f(y)|2 − |f(y)− f(x)|2 = |f(x)− 2f(y) + f(z)|2 − (f(x)− f(y))(f(x)− 2f(y) + f(z))

− (f(x)− f(y))(f(x)− 2f(y) + f(z)),

we obtain

2∆ [Γ(f)] (x) =
1

dx

∑
y∼x

pxy
dy

∑
z∼y

pyz|f(x)− 2f(y) + f(z)|2

+
2

dx

∑
y∼x

pxy
dy

∑
z∼y

pyzRe
{

(f(y)− f(x)) (f(x)− 2f(y) + f(z))
}
.

Recalling equation (2), we have

2 [Γ(f,∆f)] (x) =
1

dx

∑
y∼x

pxy (f(y)− f(x)) (∆f(y)−∆f(x))

= −|∆f(x)|2 +
1

dx

∑
y∼x

pxy
dy

∑
z∼y

pyz(f(y)− f(x))(f(z)− f(y) + (f(y)− f(x))− (f(y)− f(x)))

= −|∆f(x)|2 + |∇f |2(x) +
1

dx

∑
y∼x

pxy
dy

∑
z∼y

pyz(f(y)− f(x))(f(x)− 2f(y) + f(z))

From equation (4), we have

Γ2(f)(x) =
1

2
[∆Γ(f)(x)− 2Re {Γ(f,∆f)(x)}]

=
1

2

[
|∆f(x)|2 − |∇f |2(x) +

1

2dx

∑
y∼x

pxy
dy

∑
z∼y

pyz|f(x)− 2f(y) + f(z)|2
]
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Since G satisfies CD(n, κ),

1

2

[
|∆f(x)|2 − |∇f |2(x) +

1

2dx

∑
y∼x

pxy
dy

∑
z∼y

pyz|f(x)− 2f(y) + f(z)|2
]
≥ 1

n
|∆f(x)|2 + κΓ(f)(x).

Isolating the Laplacian and |∇f |2(x) terms on the LHS, along with manipulating constants appropriately,

provide the lemma. �

Lemma 2.2. Let G be a simple connected graph and let f ∈ V C. Then it holds at each x ∈ V ,

(
∆|f |2

)
(x) = |∇f |2(x)− f(x)∆f(x)− f(x)∆f(x).

If f is an eigenfunction for −∆ with eigenvalue λ, this becomes

(
−∆|f |2

)
(x) = 2λ|f |2(x)− |∇f |2(x).

Proof. We have

|f(y)|2 − |f(x)|2 = f(y)f(y)− f(x)f(x)

= −
[
f(x)(f(x)− f(y)) + f(x)(f(x)− f(y))

]
+
[
f(x)f(x) + f(y)f(y)− f(y)f(x)− f(x)f(y)

]
= |f(x)− f(y)|2 − f(x)(f(x)− f(y))− f(x)(f(x)− f(y))

so

(
∆|f |2

)
(x) =

1

dx

∑
y∼x

pxy
(
|f(y)|2 − |f(x)|2

)
=

1

dx

∑
y∼x

pxy

[
|f(x)− f(y)|2 − f(x)(f(x)− f(y))− f(x)(f(x)− f(y))

]
= |∇f(x)|2 − f(x)(−∆f(x))− f(x) (−∆f(x)) .

�

Theorem 2.3. Let G be a finite connected graph and suppose f ∈ V C is a harmonic eigenfunction of

−∆ with nontrivial eigenvalue λ > 0 satisfying CD(n, κ). Then the following holds at each x ∈ V and

α > 2− 2κ/λ:

(12) |∇f |2(x) + αλ|f |2(x) ≤
(α2 − 4

n
)λ+ 2κα

(α− 2)λ+ 2κ
λmax

z∈V
|f |2(z).
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Proof. Using Lemma 2.1 and its proof,

(−∆)|∇f |2(x) = (−2)∆ [Γ(f)] (x)

= − 1

dx

∑
y∼x

pxy
dy

∑
z∼y

pyz|f(x)− 2f(y) + f(z)|2

− 2

dx

∑
y∼x

pxy
dy

∑
z∼y

pyzRe
{

(f(y)− f(x)) (f(x)− 2f(y) + f(z))
}

≤ −
(

4

n
− 2

)
|∆f(x)|2 − (2 + 2κ)|∇f |2(x)

− 2

dx

∑
y∼x

pxy
dy

∑
z∼y

pyzRe
{

(f(y)− f(x)) (f(x)− 2f(y) + f(z))
}

= λ2
(

2− 4

n

)
|f |2(x)− 2κ|∇f |2(x)− 2Re

{
1

dx

∑
y∼x

pxy(f(y)− f(x))(−λf(y))

}

= λ2
(

2− 4

n

)
|f |2(x)− 2κ|∇f |2(x)

− 2Re

{
1

dx

∑
y∼x

pxy(f(y)− f(x))(−λf(y) + λf(x)− λf(x))

}

= λ2
(

2− 4

n

)
|f |2(x)− 2κ|∇f |2(x) + 2λ|∇f |2(x) + 2λ2|f |2(x)

= (2λ− 2κ)|∇f |2(x)− 4

n
λ2|f |2(x)

Combining the preceding inequality and Lemma 2.2, we get, for α > 0,

(−∆)(|∇f |2(x) + αλ|f |2(x)) ≤ (2λ− 2κ)|∇f |2(x)− 4

n
λ2|f |2(x) + 2αλ2|f |2(x)− αλ|∇f |2(x)

≤ (2λ− αλ− 2κ) |∇f |2(x) +

(
2α− 4

n

)
λ2|f |2(x)

Let v ∈ V satisfy

|∇f |2(v) + αλ|f |2(v) = max
z∈V

[
|∇f |2(z) + αλ|f |2(z)

]
.

Then since v maximizes the expression over V ,

0 ≤ (−∆)
(
|∇f |2(v) + αλ|f |2(v)

)
≤ (2λ− αλ− 2κ) |∇f |2(v) +

(
2α− 4

n

)
λ2|f |2(v).

So, for α > 2− 2κ/λ,

|∇f |2(v) ≤
2α− 4

n

λ(α− 2) + 2κ
λ2|f |2(v).
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By our choice of x ∈ V ,

|∇f |2(x) + αλ|f |2(x) ≤ |∇f |2(v) + αλ|f |2(v)

≤
2α− 4

n

λ(α− 2) + 2κ
λ2|f |2(v) + αλ|f |2(v)

≤
(α2 − 4

n
)λ+ 2κα

(α− 2)λ+ 2κ
λmax

z∈V
|f |2(z).

�

Again following [4, Thm. 3.3], choose α = 4− 2κ/λ to obtain the following:

Theorem 2.4. Let G be a finite connected graph and suppose f ∈ V C is a harmonic eigenfunction of

−∆ with nontrivial eigenvalue λ > 0 satisfying CD(n, κ). Then the following holds at each x ∈ V :

|∇f |2(x) ≤
((

8− 2

n

)
λ− 4κ

)
max
z∈V
|f |2(z).

Applying Lemmas 1.3, 1.6, and Theorem 2.4, the following is immediately proved.

Theorem 2.5. Let (G, σ) be a finite, connected, unbalanced magnetic graph with an entire signature σ

taking values in S1
` . If (G, σ) satisfies CDσ(n, κ) and f ∈ V C is a harmonic eigenfunction of −∆σ with

nontrivial eigenvalue λ > 0, then the following holds at each x ∈ V :

|∇σf |2(x) ≤
((

8− 2

n

)
λ− 4κ

)
max
z∈V
|f |2(z).

3. Eigenvalue estimate and application to Magnetic Cheeger number

We will now apply the Harnack inequality in the manner of Chung, Lin, and Yau[4] to obtain a lower
bound for the eigenvalues of the magnetic Laplacian.

Theorem 3.1 (Chung, Lin, Yau). Suppose G = (V,E, p) is a finite connected graph, and suppose

f ∈ V R is a harmonic eigenfunction for −∆ with eigenvalue λ > 0, satisfying CD(n, κ). Then it holds

λ ≥ 1 + 4κdD2

d(8− 2
n
)D2

.

This fact was proved by Chung, Yau[4, Thm. 3.5] for the case where ∆ is an operator on V R. The
authors identify a path connecting the vertices at which the extreme values of the eigenfunction in
question are attained. The Harnack inequality is then used to estimate the energy along the path, and
in turn, the eigenvalue. In the case where ∆ is an operator on V C, the estimate still holds. In allowing
the function values to be complex, an extremality argument is replaced with a convexity argument in
identifying the vertices between which the modulus of the difference of the function values is maximal,
but the approach is otherwise identical.

Theorem 3.2. Suppose (G, σ) is a connected, simple, unabalanced magnetic graph with entire signature

σ taking values in a cyclic group S1
` , ` ≥ 2, satisfying CDσ(n, κ). Let G have diameter D, maximum

degree d, magnetic girth gσ <∞. Suppose λ > 0 is a nontrivial eigenvalue for −∆σ. Then it holds

λ ≥ 1 + 4κd (2D + `gσ)2

d(8− 2
n
) (2D + `gσ)2

.
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Proof. Suppose f ∈ V C is a harmonic eigenfunction for −∆σ with eigenvalue λ. Then by Lemma 1.7,

f̂ ∈ V̂ C is a harmonic eigenfunction for ∆̂, the Laplacian for the lift, with the same eigenvalue. Moreover,

it satisfies CD(n, κ) by Lemma 1.5. So, by Theorem 3.1 and Lemma 1.1, it holds

λ ≥ 1 + 4κdD̂2

d(8− 2
n
)D̂2
≥ 1 + 4κd (2D + `gσ)2

d(8− 2
n
) (2 + `gσ)2

.

�

In this application, we use the preceding eigenvalue estimate to find a lower bound on the magnetic
Cheeger number. The context is the work by Lange, Liu, Peyerimhoff, and Post[5], whose estimate of
the magnetic Cheeger number provides the link between the Cheeger number and the least eigenvalue
of ∆σ. We note that in their approach, the vertex set of the graph is weighted and the signature takes
values in an arbitrary group. Here we consider the case where the vertices are weighted according to
their degrees, and the signature group is cyclic.

Definition 3.3. Suppose (G, σ) is a simple magnetic graph with signature in a cyclic group S1
` , and

V1 ⊂ V is nonempty with (V1, E1) its induced subgraph. Then we define the frustration index of V1,

denoted ισ(V1) to be

ισ(V1) := min
τ :V1→S1

`

∑
{x,y}∈E1

pxy|τ(x)− σxyτ(y)|.

The frustration index can be thought of as a measure of the balancedness of the subset V1. This
can be made explicit, as discussed in [5] in the context of the historical work by Harary who is widely
considered to have been the first to formalize signed graphs (in the setting of signed social networks[2]).
In particular, if σ is taking values in S1

2 , i.e. the ±1 group, then

ισ(V ) = 2eσmin(V ),

where eσmin(V ) is the minimum number of edges needed to be removed from G to make it balanced.

Definition 3.4. Suppose (G, σ) is a simple magnetic graph with signature in a cyclic group S1
` . The

magnetic Cheeger number hσ1 is defined by

hσ1 := min
∅6=V1⊂V

ισ(V1) +
∑
{x,y}∈E(V1,V c

1 )
pxy∑

x∈V1 dx
,

where E(V1, V
c
1 ) := {{x, y} ∈ E : x ∈ V1, y /∈ V1}.

Lange, Liu, Peyerimhoff, and Post[5, Thm. 4.1] proved the following Cheeger inequality relating hσ1
to ∆σ.

Theorem 3.5 (Cheeger’s Inequality). Suppose (G, σ) is a simple magnetic graph and σ takes values in

a finite cyclic group S1
` . Let λ be the least eigenvalue of −∆σ, and d the maximum degree in the graph.

Then
1

2
λ ≤ hσ1 ≤ 2

√
2dλ.

Now in conjunction with the eigenvalue estimate in Theorem 3.2, and the preceding, we obtain
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Theorem 3.6. Suppose (G, σ) is a connected, simple, unabalanced magnetic graph with entire signature

σ taking values in a cyclic group S1
` , ` ≥ 2, satisfying CDσ(n, κ). Let G have diameter D, maximum

degree d, and magnetic girth gσ <∞. Then

1 + 4κd (2D + `gσ)2

d(16− 4
n
) (2D + `gσ)2

≤ hσ1 .
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