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Magnetic Graphs & Lifts

A combinatorial graph G = (V(G), E(G)) is called simple if its vertex set is finite
and I1ts edge set contains no loops or multiple edges. A graph is called con-
nected if there Is at least one path connecting any two vertices. Throughout,
we consider simple, connected graphs. If two vertices u,v € V are adjacent,
we write u ~ v.

Signatures

The oriented edge set of a graph G is given by
E°"(G) := {(u,v),(v,u) : u,v € V(G),u ~ v}.
A signature on a graph is a map
o:E°(G) = S":(u,v) — oy,

satisfying the property oy, = o4v. A pair (G,o)iscalledamagnetic graph.
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Figure: Three magnetic cycle graphs. Examples (a) and (b) are unbalanced, and (c) is
balanced.

A magnetic graph (G, o) Is balanced if the product of the signature values
along any cycle Is 1; otherwise, a magnetic graph is called unbalanced.

Magnetic lift graphs

If (G, o) Is a magnetic graph and o takes values in a finite subgroup S} < S7,

we may construct a magnetic lift graph G via the vertex set V(G) := V(G) x S},
with two vertices (u, w,), (V, w,) adjacent if and only if u ~ v and w, = wqoyy.
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Figure: Various lifts from the preceding magnetic graphs.

(c) Lift of graph (c)

above, notice the  (d) Lift of graph (c)

Balanced magnetic graphs always have disconnected lift graphs; unbal-
anced magnetic graphs usually have connected lift graphs.
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What is optimal transport on graphs?

Let G = (V(G), E(G)) be a simple connected graph equipped with the shortest-
path metric d. Suppose one has two mass (probability) distributions defined
on the vertices of a graph, say v,u : V(G) — R, then we may consider the
question of how one can transport the mass u to the mass v. This is formal-
Ized with the notion of a transport plan y, a non-negative function which
quantifies the amount of mass moved from vertex u to vertex v. I'(u,v) IS
the set of all admissible u, v-transport plans y. Then the transport cost of
u and v with respect to the metric d (Or the 1-Wasserstein metric) may be
formulated:

Wiy, "):yeirr&fw Z Z d(u, vyy(u, v). (1)

ueV(G) veV(G)

Optimal transport on graphs is the study of this quantity, others like it, and
the transport plans which attain them.

Let up € V(G) be a fixed ‘base vertex.” We define the Lipschitz space and its
norm:

Lipo(G):={f : V>R | fluo)=0}, IIfllip = max|f(u) - f()

for each f e Lipy(G). If f € Lipo(G) with ||f|| i, <1, then f is called an extreme

point of the unit ball in Lip,(G) (denoted B,;,) provided that for any g «
Lip,(G), If it holds that

{f +tg | te[-1,1]} c Byp,
then g = o. If {u,v} € E(G), we say that {u, v} is satisfied by f provided
f(u)-f(v)l =1.

Classical convex extreme points.

Let G = (V(G),E(G)) be a connected simple graph, and f € By;, C
Lipo(G). Consider the subgraph Hr in G formed by V(Hy) = V(G), and

E(Hr) == {{u,v} € E(G) | {u,v} is satisfied by f} .
Then f Is an extreme point of B;, if and only if Hf Is connected.

Separately, we define for each pair of adjacent vertices u ~ v the combina-
torial atom my, : V(G) — R defined by

Myv(X) = Ty — Ty
We define the Arens-Eells space to be
A(G) = spang{Myy}u-v
equipped with the norm

Imilg :=inf{ 3 lal | m= )" aimyy/.
i i

Classical Kantorovich Duality on Graphs.

The spaces A(G)* and Lip,(G) are isometrically isomorphic. It holds
Wi, v) = sup {| > fupuw)—vw)| | f € Lipg(G). Iflluip < 1}
ueV(G)
= ||lu - vllx

Open Questions

(1) How can we further describe ||-||g- in terms of the norm
|-||£ using the compression mapping?

(2) How can magnetic transport be interpreted as a physical
process?

Notation

-V* algebraic dual space -S':={zeC:|z| =1}
-Z complex conjugate *S;,  p-th roots of unity
-G simple connected graph -spang{...} [F-linear span of {...}

Results

In the case of a simple magnetic graph (G, o), we may consider two new
normed spaces. The o-Lipschitz space Lip°(G) and its norm are defined by

Lip®(G) := {f : V(G) > C}.  [[fllLip= = max|f (u) - ounf(V)I.

If f e Lip°(G) with IfllLipe < 1, then f Is called an extreme point of the unit

ball in Lip®(G) (denoted By;,-) provided that for any g € Lip“(G), if it holds
that

if+tg | te[-1,1]} Blipe

then g = 0. If {u, v} € E(G), we say that {u, v} is o —satisfiedbyfprovided|f(u)-
O-uvf(V)| = 1.
Convex extreme points.

Let (G, o) be an unbalanced graph, and f € Bj;,-. Then f isan extreme
point of By;» If and only if the magnetic graph Hy defined by the
vertex set V(G), the edge set

E(Hf) == {{u,v} € E(G) | {u,v} is o-satisfied by f} .

and which we equip with the same signature structure o as on G, Is
unbalanced on each of its connected components.
Similarly, we may define a magnetic atom for every pair of adjacent vertices
u,v, and the o-Arens-Eells space to be
Mu(X) = Ty —owlyy,  A°(G) :=spanc{mg,}u-v

equipped with the norm

Imllge :=inf{ > lail | m=3" amg,}
I i

Kantorovich duality.

For an unbalanced, simple magnetic graph (G, o) the spaces A£°(X)
and Lip°(X)* are isometrically isomorphic.

Compression Transformation

We define the linear compression mapping C : K£(G) — K£°(G) by setting, for
each m € &£(G), u € V(G),

(Cmy) = ) Em(u,é).
£€S),
C 1s In fact a surjective contraction onto the space A£°(G). We have the equa-
tion R
1m°|lge = min {||m||g|m e £(X);Cm = m°}

for each m € A£°(G).
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