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Magnetic Graphs & Lifts

A combinatorial graph G = (V(G), E(G)) is called simple if its vertex set is finite
and its edge set contains no loops or multiple edges. A graph is called con-
nected if there is at least one path connecting any two vertices. Throughout,
we consider simple, connected graphs. If two vertices u, v ∈ V are adjacent,
we write u ∼ v.

Signatures

The oriented edge set of a graph G is given by
Eor(G) := {(u, v), (v,u) : u, v ∈ V(G),u ∼ v}.

A signature on a graph is a map
σ : Eor(G) → S1 : (u, v) 7→ σuv,

satisfying the property σvu = σuv. A pair (G,σ)iscalledamagnetic graph.

(a) 7-vertex cycle graph,
with real-valued signature.
The edges with positive
signature are in blue, those
with negative signature are
in red.

(b) 7-vertex cycle graph
with complex-valued
signature. All edges have
signature e iπ2 , illustrated by
the angular offset of the
blue arrow from the red
edges.

(c) 8-vertex cycle graph
with complex-valued
signature. All edges have
signature e iπ2 , illustrated by
the angular offset of the
blue arrow from the red
edges.

Figure: Three magnetic cycle graphs. Examples (a) and (b) are unbalanced, and (c) is
balanced.

A magnetic graph (G,σ) is balanced if the product of the signature values
along any cycle is 1; otherwise, a magnetic graph is called unbalanced.

Magnetic lift graphs
If (G,σ) is a magnetic graph and σ takes values in a finite subgroup S1p ≤ S1,
we may construct a magnetic lift graph Ĝ via the vertex set V(Ĝ) := V(G) × S1p
with two vertices (u,ω1), (v,ω2) adjacent if and only if u ∼ v and ω2 = ω1σuv.

(a) Lift of the graph
in (a) above. The
lower and upper
levels correspond
to the signature
values of +1 and -1
resp.

(b) Lift of graph (b)
above; notice the 4
‘levels’ and
connectedness

(c) Lift of graph (c)
above, notice the
disconnectedness
of the graph.

(d) Lift of graph (c)
above with one cycle
highlighted.

Figure: Various lifts from the preceding magnetic graphs.

Balanced magnetic graphs always have disconnected lift graphs; unbal-
anced magnetic graphs usually have connected lift graphs.

What is optimal transport on graphs?

Let G = (V(G), E(G)) be a simple connected graph equipped with the shortest-
pathmetric d. Suppose one has twomass (probability) distributions defined
on the vertices of a graph, say ν, µ : V(G) → Ò, then we may consider the
question of how one can transport the mass µ to the mass ν. This is formal-
ized with the notion of a transport plan γ, a non-negative function which
quantifies the amount of mass moved from vertex u to vertex v. Γ(µ, ν) is
the set of all admissible µ, ν-transport plans γ. Then the transport cost of
µ and ν with respect to the metric d (Or the 1-Wasserstein metric) may be
formulated:

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∑
u∈V(G)

∑
v∈V(G)

d(u, v)γ(u, v). (1)

Optimal transport on graphs is the study of this quantity, others like it, and
the transport plans which attain them.
Let u0 ∈ V(G) be a fixed ‘base vertex.’ We define the Lipschitz space and its
norm:

Lip0(G) :=
{
f : V → Ò

�� f (u0) = 0}
, | |f | |Lip = maxu∼v

|f (u) − f (v)|

for each f ∈ Lip0(G). If f ∈ Lip0(G) with | |f | |Lip ≤ 1, then f is called an extreme
point of the unit ball in Lip0(G) (denoted BLip) provided that for any g ∈
Lip0(G), if it holds that {

f + tg
�� t ∈ [−1, 1]} ⊂ BLip,

then g ≡ 0. If {u, v} ∈ E(G), we say that {u, v} is satisfied by f provided
|f (u) − f (v)| = 1.

Classical convex extreme points.
Let G = (V(G), E(G)) be a connected simple graph, and f ∈ BLip ⊂
Lip0(G). Consider the subgraph Hf in G formed by V(Hf ) = V(G), and

E(Hf ) :=
{
{u, v} ∈ E(G)

�� {u, v} is satisfied by f } .
Then f is an extreme point of BLip if and only if Hf is connected.

Separately, we define for each pair of adjacent vertices u ∼ v the combina-
torial atom muv : V(G) → Ò defined by

muv(x) := 1{u} − 1{v}
We define the Arens-Eells space to be

Æ(G) := spanÒ{muv}u∼v
equipped with the norm

| |m| |Æ := inf
{∑

i
|ai|

�� m =
∑
i
aimuivi

}
.

Classical Kantorovich Duality on Graphs.
The spaces Æ(G)∗ and Lip0(G) are isometrically isomorphic. It holds

W1(µ, ν) = sup
{��� ∑
u∈V(G)

f (u)(µ(u) − ν(u))
��� �� f ∈ Lip0(G), | |f | |Lip ≤ 1}

= | |µ − ν | |Æ

Open Questions

(1) How can we further describe | |·| |Æσ in terms of the norm
| |·| |Æ using the compression mapping?
(2) How can magnetic transport be interpreted as a physical
process?

Notation

• V* algebraic dual space
• z complex conjugate
•G simple connected graph

• S1 := {z ∈ Ã : |z| = 1}
• S1p p-th roots of unity
• spanÆ{...} Æ-linear span of {...}

Results

In the case of a simple magnetic graph (G,σ), we may consider two new
normed spaces. The σ-Lipschitz space Lipσ(G) and its norm are defined by

Lipσ(G) := {f : V(G) → Ã}, | |f | |Lipσ = maxu∼v
|f (u) − σuvf (v)|.

If f ∈ Lipσ(G) with | |f | |Lipσ ≤ 1, then f is called an extreme point of the unit
ball in Lipσ(G) (denoted BLipσ) provided that for any g ∈ Lip

σ(G), if it holds
that {

f + tg
�� t ∈ [−1, 1]} ⊂ BLipσ,

then g ≡ 0. If {u, v} ∈ E(G), we say that {u, v} is σ −satisfiedbyfprovided|f(u)-
σuvf (v)| = 1.

Convex extreme points.
Let (G,σ) be an unbalanced graph, and f ∈ BLipσ . Then f is an extreme
point of BLipσ if and only if the magnetic graph Hf defined by the
vertex set V(G), the edge set

E(Hf ) :=
{
{u, v} ∈ E(G)

�� {u, v} is σ-satisfied by f } ,
and which we equip with the same signature structure σ as on G, is
unbalanced on each of its connected components.

Similarly, we may define amagnetic atom for every pair of adjacent vertices
u, v, and the σ-Arens-Eells space to be

mσ
uv(x) := 1{u} − σuv1{v}, Æσ(G) := spanÃ{mσ

uv}u∼v
equipped with the norm

| |m| |Æσ := inf
{∑

i
|ai|

�� m =
∑
i
aimσ

uivi

}
.

Kantorovich duality.
For an unbalanced, simple magnetic graph (G,σ) the spaces Æσ(X)
and Lipσ(X)∗ are isometrically isomorphic.

Compression Transformation

We define the linear compression mapping C : Æ(Ĝ) → Æσ(G) by setting, for
each m ∈ Æ(Ĝ),u ∈ V(G),

(Cm)(u) =
∑
ξ∈S1p

ξm(u, ξ).

C is in fact a surjective contraction onto the space Æσ(G). We have the equa-
tion

| |mσ | |Æσ = min
{
| |m| |Æ

��m ∈ Æ(X̂);Cm = mσ
}

for each m ∈ Æσ(G).
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