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“PageRank can be thought of as a model of user behavior. We assume there is a ‘random
surfer’ who is given a Web page at random and keeps clicking on links, never hitting ‘back’

but eventually gets bored and starts on another random page. The probability that the
random surfer visits a page is its PageRank.” Sergey Brin and Lawrenge Page on their

search engine prototype Google[6].

1. Introduction

There is a famous saying in the mathematics community which captures quite nicely the
spirit and beauty of the random walk process: “A drunk mathematician always stumbles
home, but a butterfly flies forever.” This sentence references to the recurrence and transience
problem of the random walk in space, which dates back nearly a century to Polya[23] in 1921.
The problem is posed as follows. A hypothetical “walker” begins at a fixed point in space,
and as each minute passes, the walker moves one step in a particular direction (north, south,
east, west) chosen at random with equal probability. In two dimensions, it can be shown that
the walker is expected (with probability 1) to return to its initial position infinitely many
times– hence, the drunk mathematician finding her way home. In three dimensions, wherein
the walker is allowed to drift up and down in addition to the planar directions, it can be
shown that the walker is expected to return to its initial position only finitely many times,
drifting forever thereafter. We will explore this problem in detail in Section 3.
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In the years since, random walks have emerged as a powerful theoretical tool for modeling
processes with behave and evolve probabilistically in a static space. Random walks have
appeared everywhere from quantum mechanics and mathematical physics[20], to finance[18],
signal processing[24], and beyond. One of the most famous applications of the model is to
the Google PageRank algorithm[6]; here, the “static space” in which the walker is moving is
the internet. Loosely speaking, the more often the walker is expected to visit a website, the
higher “ranked” it becomes in the Google indexing hierarchy.

The purpose of this paper is to explore some selected random walk models posed on various
types of networks. Mathematically, networks are collections of vertices (or nodes), connected
by edges. In section 2, we set up the preliminary notions needed for the paper. In sections 3
and 4, we explore the very classical problems for infinite lattice networks and simple networks,
respectively. Finally, in sections 5 and 6, we look at much more modern theory wherein the
probabilistic framework of the walker and network (resp.) are reimagined.

2. Preliminaries

2.1. Stochastic and Markov Processes. Our probability notations will follow convention:
P [·] ,P [·|·], E [·] denote probability measure, conditional probability, and expectation operator,
respectively. The capital letter X will be used to denote random variables in general, {Xn}n≥0

will denote sequences of random variables with the index n ≥ 0 called the time step (mostly
the braces will be omitted for convenience).

A discrete-time stochastic process is a sequence {Xn}n≥0 of random variables taking values
in a set S, called the state space (for example, N,Z or the vertices of a graph). We can think
of Xn as ‘jumping’ or ‘walking’ between the elements of the state space subject to certain
probabilistic conditions. If S is discrete, as it will be for our purposes, then Xn is called
a discrete-time discrete-space stochastic process. We will use letters i, j, k to denote general
elements of S as needed. A Markov Process is a stochastic process Xn for which

P
[
Xn+1 ∈ A

∣∣Xk = xk, k ≤ n
]

= P
[
Xn+1 ∈ A

∣∣Xn = xn
]

for all eventsA and n ≥ 0. This formalizes the notion that a Markov process is only determined
by the most recent position of the walker, and that past history does not contribute anything
when coupled with more recent information.

A Markov process Xn is analyzed through its one-step transition probabilities:

pij := P
[
Xn = j

∣∣Xn−1 = i
]

which is independent of n since Xn is Markov. Similarly, we have the m-step transition
probabilities:

p
(m)
ij := P

[
Xn = j

∣∣Xn−m = i
]
.

To concretely relate the two we use the one-step transition matrix P := [pij ]. The probabilities
are related through the transition matrix by the Chapman-Kolmogorov equations,

(1) p
(m+`)
ij =

∑
k∈S

p
(m)
ik p

(`)
kj

for any i, j ∈ S and m, ` ≥ 0. In particular, this means that we can find the m-step probability
transition matrix P(m) by taking powers of the 1-step transition matrix; that is, P(m) = Pm.
For a proof, see e.g., [16, Prop. 3.2.1]. Transition matrices encode not just local information
about the probabilities of transitioning between states, but also global information about how
distributions evolve in time. Suppose µ : S → R≥0 : i 7→ µi is a mass distribution for the
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initial step of a Markov process Xn; i.e.,
∑

i∈S µi = 1 and P [X0 = i] = µi. We suggestively
use subscripts here because if we treat µ = [µi] as a row vector, then

P
[
X1 = i

∣∣P [X0 = i] = µi
]

= (µP)i

for any i ∈ S. A stationary distribution for the Markov process Xn, conventionally denoted
π, is a distribution for which

πP = π.

A state j is said to be accessible from i if there exists n > 0 for which p
(n)
ij > 0, a property

denoted by i→ j. If i→ j and j → i, the states are said to communicate and we write i↔ j.
A Markov process is called irreducible if all states i, j ∈ S communicate.

Let Ni represent the number of times a Markov process returns to a state i given that
X0 = i. The state i is called recurrent if E [Ni] = ∞. It can be shown [16, Prop. 3.2.4]

that a state i is recurrent if and only if
∑∞

n=1 p
(n)
ii =∞. A Markov process Xn is itself called

recurrent if every state is recurrent.

Lemma 1. All states of an irreducible discrete-time Markov process {Xn}n≥0 on a finite state

space S are recurrent.

Proof. The proof is in the manner of [16, Prop. 3.2.5] with this particular formulation ex-

pressed as an exercise. First, note thatXn must contain at least one recurrent state: otherwise,

every state would be visited only finitely many times, which cannot occur since Xn is on a

finite state space over infinite time. We need to prove that recurrence is a class property, in

the sense that if i ∈ S is recurrent and i ↔ j for some j ∈ S, then j is recurrent as well.

Having proved this, the claim follows from the irreducibility of the process Xn. Assume in

that manner that i ↔ j for two states i, j ∈ S and that i is recurrent. Then there exist

integers k, ` ≥ 0 for which p
(k)
ij > 0 and p

(`)
ji > 0. Notice that if n ≥ 0, p

(`+n+k)
jj ≥ p(`)

ji p
(n)
ii p

(k)
ij ,

since Xn can return to j from j by, among other paths, getting to i, remaining there, and

returning to j. Then it holds
∞∑
n=0

p
(n)
jj ≥

∞∑
n=0

p
(`+n+k)
jj ≥ p(`)

ji p
(k)
ij

∞∑
n=0

p
(n)
ii →∞

since i is recurrent itself. We conclude j is recurrent and the claim follows. �

We say that a state i ∈ S is periodic with period d if p
(n)
ii = 0 for each integer n ≥ 0 which

is not divisible by d, and where d is the largest such integer with this property. If d = 1 the
state is aperiodic. A Markov process Xn is itself called (a)periodic if every state is (a)periodic.

Lemma 2. If for some state i ∈ S we have p
(2)
ii > 0 and p

(3)
ii > 0, then the state is aperiodic.

Proof. Notice first that since any n ≥ 2 may be expressed n = 2k1 + 3k2 for nonunique

k1, k2 ∈ N, it follows

p
(n)
ii = p

(2k1+3k2)
ii ≥ p(2k1)

ii p
(3k2)
ii ≥

(
p

(2)
ii

)k1 (
p

(3)
ii

)k2
> 0

and the claim holds. �

It can also be shown [16, Def. 3.2.11] that periodicity is a class property; that is, if i ↔ j
and i is periodic, then so is j (with the same period). Note that periodicity and recurrence
are not mutually exclusive. States which are both aperiodic and recurrent are called ergodic,
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with Xn ergodic if all of its states are ergodic. The last thing that we want to recall is the
well-known Ergodic theorem, recalled and proved in [16, Thm. 3.2.1].

Theorem 3. If Xn is an irreducible and ergoic Markov process, then it possesses a stationary

distribution π = [πj ] satisfying

(1) πj = limn→∞ p
(n)
ij , for each j ∈ S, independent of i ∈ S.

(2) πP = π

(3)
∑

i∈S πi = 1

As a consequence of the Perron-Frobenius theorem, π is unique.

2.2. Graph theory. A graph or network is a pair of sets G = (V,E) where V is a collection
of vertices, points, or nodes; and E is a collection of edges. An undirected graph has edges
of the form {i, j}, taken without direction; directed graphs have edges of the form (i, j). An
edge weight is a map µ : E → [0,∞) associating a positive number to each edge. Combining a
weight with a graph forms a weighted graph. We will mostly consider undirected, unweighted
graphs here for simplicity and accessibility.

The number of vertices is denoted |V |, and the number of edges |E|. We generally use
the letters i, j, k, v, w to denote individual nodes. A simple graph is undirected and satisfies
|V | <∞, no loops (edges of the form {i, i}), and no multiple edges (copies of the same edge
in E). If two vertices i, j ∈ V lie along an edge, they are called adjacent and we express it
i ∼ j; in the case of directed networks, this relation is not necessarily symmetric. The in
degree of a vertex i, denoted din(i) is the number of edges of the form (·, i). The out degree
of a vertex, denoted dout(i) is the number of edges of the form (i, ·). If G is undirected, these
numbers are the same, and are called the degree of a vertex d(i) or di.

The following lemma will be useful and is known as the Handshaking lemma or the degree-
sum formula.

Lemma 4. If G is simple, then
∑

i∈V d(i) = 2|E|.

Proof. The proof is simple and relies on overcounting. Notice that summing over all of the

degrees contributes twice the number of edges since you will count each edge once at both of

its endpoints. �

A path of length n is an ordered list (v0, v1, . . . , vn) of n + 1 vertices such that vj−1 ∼ vj ,
1 ≤ j ≤ n. G is said to be connected provided that there exists a path connecting any two
vertices in V . The graph G is said to be bipartite if the vertex set admits a decomposition
into two nonempty disjoint sets V = V1 ∪ V2, called the biparition, so that there are no edges
contained strictly in either set; that is, every edge connects one vertex from V1 to one from
V2. A useful characterization is the following lemma, whose proof we omit but can be found
in [2, Th. 1.5.10].

Lemma 5. A graph G is bipartite if and only if it contains no cycles of odd length.

Here are some important matrices associated with graph structure which we will use. Define
matrices AG = [aij ],DG = [dij ] by:

aij :=

{
0 i � j

1 i ∼ j
, dij =

{
0 i 6= j

d(i) i = j
, 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V |.
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Here, the vertices are enumerated in an arbitrary but fixed way. Most important linear
algebraic properties of these matrices are invariant under the action of permutations, hence
independent of the particular enumeration.

The combinatorial Laplacian associated to G is the matrix ∆, with rows and columns
indexed by some enumeration of V , defined by

∆ij =

{
d(j) i = j,
−1 i ∼ j,
0 otherwise

.

If f : V → R and is treated as a column vector, we may speak of its combinatorial Laplacian
as the matrix product ∆f . We then have the formula

(2) (∆f)(u) =
∑
v∼u

(
f(u)− f(v)

)
.

The simple random walk G is the discrete-time stochastic process whose state space is V ,
subject to the following one-step transition probabilities:

pij =

{
0 i � j,

1
dout(i)

i ∼ j.

That is, the walk jumps between adjacent vertices with equal probability of encountering any
vertex adjacent to its current step. Notice that this process is Markov because the (n+ 1)-st
step of the walker is determined only by its position at time n. When G is connected (and
hence D invertible) A one-line computation verifies the identity

P = D−1A.

2.3. Calculus and Linear Algebra. We want to briefly set down some notes about notation
for various calculus-related tools. If f : [0,∞) → R is a continuous function, we denote its

Laplace transform f̂(s) =
∫∞

0 f(t)e−stdt; inverse Laplace transform is denoted L−1{f}(t).
Convolution is denoted by (f ?g)(t) =

∫ t
0 f(s)g(t−s)ds and is defined for sufficiently continous

functions f, g : [0,∞)→ R. We also need the following useful theorem:

Theorem 6 (Final Value Theorem). If f : [0,∞)→ R is bounded and integrable, then

lim
x→∞

f(x) = lim
s→0+

sf̂(s).

From [12, Th. 8.4.4] we have the workhorse Perron-Frobenius Theorem

Theorem 7 (Perron-Frobenius). Let A be an n×n, n ≥ 2 nonnegative and irreducible matrix.

Let ρ(A) be it spectral radius; that is, the maximum absolute value of its eigenvalues. Then

(1) ρ(A) > 0,

(2) ρ(A) is an algebraically simple eigenvalue of A,

(3) There is a unique real vector x ∈ Rn for which Ax = ρ(A)s and
∑

i xi = 1.

Ir/reducibility here is in the standard sense: a matrix is reducible if there is a permutation
matrix relating A to new form with a 0 block in one of the off-diagonal corners of nonzero
dimension[12, Def. 6.2.21]. Another characterization of this is the following: A is irreducible
if (Id +A)n−1 is a matrix with strictly positive entries[12, Lm. 8.4.1].
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3. Recurrence on Infinite Networks

A locally finite infinite network of the form G = (V,E) is a simple network as before, but
such that V is of countably infinite size, and with the additional property that each vertex
x ∈ V has finitely many neighbors. These networks come in many forms. Here, we will
investigate two particular types: the d-dimensional lattice, and the k-th rooted infinite tree.

In the first subsection will prove Polya’s classical recurrence result which identifies the di-
mensions in which a walker moving randomly on a lattice, having started at the origin, is
expected to return. We will prove this result in the cases d = 1, 2, 3 using purely combina-
torial methodology. In the second subsection, we will put forth a generalized framework for
investigating the recurrence and transience of random walks on locally finite infinite networks
which utilizes what we will call energy methods, adapted from the literature of electrical
networks[9, 5].

3.1. Recurrence on Lattices with Combinatorial methods. Random walks on lattices
are an interesting special case of the general theory of random walks on networks for a mul-
titude of reasons. First, lattices of the form Zd where d ≥ 1 can show up in finite element
methods as convenient discrete spatial models. Second, they are one of the handful of well-
structured infinite networks on which the recurrence or transience of the symmetric walk has
a well-defined, classically proved answer. In this section, we will cover the classic historical
result due to Polya[23] in 1921. The recurrence/transience properties are known for walks on
lattices of all dimensions; here, we prove the result up to dimension three.

Theorem 8. The simple symmetric random walk on the lattice Zd is recurrent for d = 1, 2

and transient for d > 3.

Precisely, by the lattice Zd we mean the set of points

Zd := {(n1, n2, . . . , nd) : nj ∈ Z for 1 ≤ j ≤ d};

these points are connected by an edge if and only if they are exactly one unit apart. Generally
we denote points in this space by x,y with the origin 0 = (0, 0, . . . , 0). The simple random
walk Xn on the lattice is then interpreted as the walk beginning at the origin and then moving
in discrete time subject to the one-step transition probabilities

P [Xn+1 = y|Xn = x] =

{
1
2d if x ∼ y

0 if x � y
.

To prove this in dimensions d = 1, 2 we will make use of the well-known Stirling’s formula,
which is

n! ≈
√

2πne−nnn, n ≥ 1,

interpreted in the sense that limn→∞
n!√

2πne−nnn = 1. Also useful will be Vandermonde’s

combinatorial identity, which states that for m,n, r nonnegative, we have(
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
.

Proof. The argument here follows [15]. We begin with the case of dimension one. Recall that

the walk will be recurrent if and only if the expected number of visits of Xn to the origin,

given X0 = 0, is infinity. If

un = P [Xn = 0|X0 = 0] ,
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then

E [# visits to the origin |X0 = 0] =
∞∑
n=1

un.

The number of paths originating at 0 and returning in 2n steps
(

2n
n,n

)
; there are no such paths

of odd length. Any one of these occurs with probability
(

1
2

)2n
, so via Sterling’s formula,

u2n =

(
2n

n, n

)(
1

2

)2n

=
(2n)!

22nn!n!
≈
√

4πne2n(2n)2n

e2n(2πn)n2n22n
=

1√
πn

so that
∑∞

n=1 un →∞.
In dimension two, there are

∑n
k=0

(
2n

k,k,n−k,n−k
)

paths of length 2n originating and termi-

nating at 0.

u2n =
1

42n

n∑
k=0

(2n)!

k!k!(n− k)!(n− k)!
=

1

42n

(2n)!

n!n!

n∑
k=0

(
n

k

)2

.

By Vandermonde’s identity,

n∑
k=0

(
n

k

)2

=

n∑
k=0

(
n

k

)(
n

n− k

)
=

(
2n

n

)
,

so

u2n =
1

42n

(
2n

n

)
=

1

42n

(2n)!2

(n!)4
≈ 1

42n

(4πn)(2n)4n

e4n

e4n

(2πn)2n4n
=

1

πn

so that
∑∞

n=1 un →∞.
Having established the recurrence of the random walks in dimensions one and two, we

will now prove that the walk is transient in dimension three. In this case, the walker has(
2n

k,k,j,j,n−k−j,n−k−j
)

possible routes with k steps left/right, j steps up/down, and n − k − j
steps forward/backward, each occurring with a probability 1

62n
. This means

u2n =
1

62n

∑
j+k≤n

(2n)!

j!2k!2(n− j − k)!2
=

1

22n

(
2n

n

) ∑
j+k≤n

(
(n)!

32nj!k!(n− j − k)

)2

The quantity
(

(n)!
j!k!(n−j−k)

)
is maximized when n, j, k are as close together as possible, so

u2n ≤
1

22n

(
2n

n

)(
n!

3n
(
n
3

)
!

) ∑
j+k≤n

(
(n)!

3nj!k!(n− j − k)

)
.

The rightmost piece of the inequality is a distribution; e.g., for the outcomes of drawing one

ball at a time without replacement from an urn containing n balls, j, k, n− j− k of which are

the same color; i.e.,

u2n ≤
1

22n

(
2n

n

)(
n!

3n
(
n
3

)
!

)
.

Sterling’s formula then yields u2n ≈ K
n3/2 which forces

∑∞
n=1 un <∞. �



8 SAWYER JACK ROBERTSON

4. Convergence on Simple Networks

Here is the central question: what conditions on the geometric structure of a simple graph
are necessary to ensure the ergodicity of the symmetric random walk, and subsequently, when
a stationary distribution does exist, at what rate do the transitional probabilities converge
to the stationary distribution? The answer to the former is classical and well-known. An
elementary estimate of the rate of convergence to the stationary distribution in terms of the
eigenvalues of a normalized Laplacian matrix for the graph, due to Lovasz[17], is given.

Theorem 9. If G is simple, connected, and not bipartite, then the simple random walk is

irreducible, recurrent, and aperiodic. The stationary distribution as in Theorem 3 is given by

πi =
di

2|E|
, 1 ≤ i ≤ |G|.

Proof. The irreducibility and recurrence of the simple random walk process will follow from the

connectedness condition, and the aperiodicity will follow from the non-biparteness condition.

Let i, j ∈ V be fixed; since G is connected we can find a path of length m ≥ 1 of the form

(i = v0, v1, . . . , vm = j)

connecting i to j. Notice that the this path will occur with positive probability; i.e.,

p
(m)
ij ≥ P [X1 = v1, . . . , Xm = vm|X0 = v0] =

m∏
`=1

1

d(v`−1)
> 0.

That is, i → j. A symmetrically identical argument will show that i is accessible from j by

looking at the walk along this same path, but in reverse. We conclude that i ↔ j for every

two vertices i, j and that the simple random walk is irreducible, from which Lemma 1 then

yields the recurrence of the process.

Now, let us assume that the random walk is periodic with period d > 1. By Lemma 2 and

the irreducibility of the simple random walk, either p
(2)
ii = 0 or p

(3)
ii = 0 holds for every vertex

i ∈ V . It is clear that the probability of returning to a particular vertex must be positive, since

both jumping to neighbor and then jumping back occur with positive transitional probability.

In fact, p
(2k)
ii > 0 for any k ≥ 1 and i ∈ V . This means that p

(3)
ii = 0 and that d = 2, while

possibly not the largest such integer, satisfies the definition for periodicity. In particular,

p
(2k+1)
ii = 0, k ≥ 0. Since the random walk jumps between neighbors with equal probability,

the only way for p
(2k+1)
ii = 0 is for the graph to contain no cycles of odd length; via Lemma

5, this means G is bipartite.

Since the Perron-Frobenius theorem guarantees that the stationary distribution is unique,

we simply need to check that the claimed formula satisfies each of the necessary conditions.

First note

(πP)j =

n∑
i=1

πipij =
n∑
i=1

di
2|E|

pij

=
1

2|E|
∑
i∼j

di
1

di
=

dj
2|E|

= πj
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where n := |V |. Also, checking the normalization condition,

n∑
j=1

πj =
n∑
j=1

dj
2|E|

=
1

2|E|

n∑
j=1

dj =
2|E|
2|E|

= 1.

�

Our second and final result concerns estimating the rate of convergence of the transitional

probabilities p
(n)
ij to the stationary distribution πj . This proof follows that given by Lovasz[17]

with some notational adjustments. Recall from the introductory section that we expressed

P = D−1A

Let D1/2,D−1/2 be the matrices defined, in the obvious manner, to contain the square-roots
of the degrees of the vertices and their reciprocals, respectively. Again, this makes sense when
G is connected and |G| ≥ 2. Then we have

P = D−1/2
(
D−1/2AD−1/2

)
D1/2.

Define N = D−1/2AD−1/2. This matrix is very close in structure to the well-studied normal-
ized symmetric Laplacian matrix ; Chung’s Spectral Graph Theory [8] is an classic, detailed
study of matrices like these. N = [Nij ] is symmetric, so we can find n := |V | possibly non-
unique real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn, each with an associated normalized eigenvector
fk = [fk`]

n
`=1, 1 ≤ k ≤ n which together are pairwise orthogonal; in particular,

N =
∑
`=1

λ`f`f
T
` .

Theorem 10. Let G be connected and non-bipartite, and λ = max{|λ2|, |λn|} as above. Then

we have

|p(t)
ij − πj | ≤ λ

t

√
dj
di
.

for each t ≥ 1.

Proof. First note with a one-line computation that the vector g = [gi] = [
√
di] is a left

eigenvector with eigenvalue 1. By the Perron-Frobenius theorem, since g is strictly positive,

this is the dominant eigenvector whose eigenvalue only appears once and is largest in absolute

value (in particular, |λk| < 1 for 2 ≤ k ≤ n); i.e., λ1 = 1 and f1` =
√

d`
2|E| . We compute for

t ≥ 1

Pt = D−1/2NtD1/2 =

n∑
`=1

λt`D
−1/2f`f

T
` D1/2.

Entry-wise,

p
(t)
ij =

n∑
`=1

λt`f`if`j

√
dj
di

= f1if1j

√
dj
di

+
n∑
`=2

λt`f`if`j

√
dj
di

=
dj

2|E|
+

n∑
`=2

λt`f`if`j

√
dj
di
.

That is,

|p(t)
ij − πj | =

∣∣∣∣∣
n∑
`=2

λt`f`if`j

√
dj
di

∣∣∣∣∣ ≤ λt
√
dj
di
||F(·,i)||||F(·,j)|| = λt

√
dj
di
.
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In particular, p
(t)
ij → πj as claimed before. The matrix F = [f`i]`,i, as a formality, is the square

matrix whose rows consist of the orthonormal system f` 1 ≤ ` ≤ n. Then the summand is

recognized as the real inner product of the i-th and j-th columns. Since F is orthogonal,

the columns also form an orthonormal system, which when equipped with Cachy-Schwarz

inequality facilitates the last step. �

5. Harmonic Functions and the Simple Asynchronous Walk in Continuous Time

In the preceding section we examined the stationary distribution associated with a random
walk on a simple network taking place in discrete time. One straightforward way to broaden
the applicability of the model while keeping the analysis manageable is to allow the walker
to take asynchronous steps in continuous time. Still jumping between adjacent nodes, the
walker now hesitates at each step for some amount of time. The transitional probabilities
of the walker remain unchanged; however, the amount of time that a walker spends at a
particular node is no longer deterministic in discrete time steps. Rather, we introduce a
Poisson-type waiting time distribution (WTD). Having reached node i at time t0, the time of
next transition is subject to the WTD mass function

P
[
Xt0+t = i

∣∣Xt0 = i
]

= λie
−λit, t > 0,

where the local intensity λi > 0 can be chosen as desired (and not necessarily in a uniform

fashion). As in [22], letting pi(t) = P [Xt = i] and p = [p1(t) p2(t) . . . pN (t)]T , where N = |V |,
be the probabilities that the process is at state i at time t > 0, then we have the following
rate equation:

dpi
dt

=
∑
j∼i

λj
dj
pj(t)−

λi
di
pi(t).

One can think of this as a scaled difference equation measuring the total in/out flow of the
probability at a vertex. Interestingly, when the local intensities are chosen to be proportional
to degrees, e.g., λi = di, the rate equations reduce to

dp

dt
= ∆ (p(t)) .

If we want to find a steady state solution to this process, we then need to solve the Dirichlet-
type problem

∆ (p(t)) = 0,

which motivates the following theorems.
If H ⊂ V is a subset of vertices, we can define its boundary

∂H := {x ∈ V : x /∈ H, ∃y ∈ H s.t. x ∼ y},

with the closure set H = H ∪ ∂H. This concept is illustrated in Figure 1.
Consider the following Dirichlet-type boundary value problem, where H ⊂ V is a fixed

subset of vertices serving as the region of interest, and φ : ∂H → R is given.

(3)

{
(∆f)(u) = 0 u ∈ H
f(u) = φ(u) u ∈ ∂H

The solution to this problem, as well as its more general Poisson-type cousin, are known and
have been well studied [7]. Any such f is said to be harmonic on H.
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Figure 1. A dodecaheral graph with subset H, its vertex boundary ∂H, and

a particular vertex neighborhood N(u). (Borrowed from an old manuscript of

mine.)

Theorem 11 (Maximum Principle). Assume G = (V,E) is connected and that H ⊂ V is

nonempty. Let f be a solution to the Problem (3). Then

max
u∈H

f(u) = max
u∈∂H

f(u).

Proof. If f is constant the claim is clear. Assuming otherwise and arguing for contradiction,

identify one such vertex u∗ ∈ H achieving the maximum of f on H, which has a neighbor v∗,

possibly in ∂H, such that f(v∗) < f(u∗). Also, we know that f(v) ≤ f(u∗) for each v ∼ u∗.

Then

(∆f)(u∗) =
∑
v∼u∗

f(u∗)− f(v)

= f(u∗)− f(v∗) +
∑
v∼u
v 6=v∗

f(u∗)− f(v) > 0,

proving that f cannot simultaneously have a maximum on the interior and satisfy problem

(3). �

A symmetrically identical argument will suffice to show

min
u∈H

f(u) = min
u∈∂H

f(u).

Theorem 12. If G = (V,E) is connected and simple, the only solutions f : V → R to the

equation

(4) ∆f ≡ 0

are constant functions.

Proof. Clearly constant functions solve this equation. Suppose for a moment that f solves

equation (4) and f(u0) = a for some vertex u0 and a ∈ R. Let g : V → R be the constant

function g(u) = a for each u ∈ V . Since both f, g are harmonic, so is their difference. In

particular, f − g solves the equation (3) with choice H = V \{u0}, φ(u0) = 0. Since G is

connected, ∂H = {u0}, so via the preceding remarks, f − g attains both its maximum and

minimum at this vertex where their difference is 0, i.e., f ≡ g forcing f to be constant as

well. �
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If G is a disconnected network, one can apply the preceding result on each of its connected
components to obtain solutions that are instead component-wise constant.

Returning to the asynchronous walk, our search for a steady state distribution led to the
global Dirichlet problem

∆(p(t)) ≡ 0.

We now know that this can only occur if p(t) ≡ c1 for some c ∈ R, where 1 is the column
vector with every entry set to 1. Employing a normalization condition, this forces pi(t) = 1

N
for all t > 0. This is interesting because the solution is independent of the geometry of the
network; yielding to a uniform steady-stade distribution in all cases.

6. Temporal Networks and the Active Random Walk

In this section, we will reimagine the spatial structure on which the walk is taking place.
The framework we will use is known as a temporal network. The main idea behind temporal
networks is that static networks; i.e., those whose structures do not evolve in time, are insuf-
ficient to model many dynamical systems whose dynamics change in time. To illuminate this,
consider for example a population network of people amongst whom an infectious disease is
spreading, edges between people can indicate transmission of disease, which is by no means a
static phenomenon[10]. Edges in the network are no longer deterministic components of the
structure, but rather subject to stochastic behavior, turning on and off subject to the forces
within the contextual framework. There are of course many angles from which to approach
the mathematical formalism, but we will explore the remarkable avenue developed in 2012 by
authors Hoffman, Porter, and Lambiotte[10] which is known as the active random walk. At
the center is a generalized master equation for the process based on the Montroll-Weiss (MW)
equation from statistical mechanics[20]. Like many results in this field, MW was developed
for and by physicists in the context of lattices, and then has re-emerged in recent years as
network scientists across a number of disciplines have sought and proved generalizations of
the physical theories for lattices to other networks of various flavors and designs.

The first order of business will be to explain the components of the model, after which we
will derive the generalized MW equation and then the steady-state solution to the process in
the special case where the WTDs are Poisson. This will all follow [10].

As we encountered earlier, to each network we may associate an adjacency matrix A whose
entries indicate the static presence of edges. Here, within a fixed ambient network G = (V,E)
with |V | =: n (we are choosing G unweighted and undirected for simplicity), we define an
n × n matrix Ψ = [ψij(t)] whose entries ψij(t), each a WTD, give the probability of an
edge appearing between nodes i and j between time t and t + dt. Globally this means that
at any given time, the probability of any edges being present in the network is 0. We can
think of them as ‘lighting up’ at random moments in time. The walker, subjected to some
initial condition, then moves between incident vertices instantaneously as soon as a neighbor
becomes available. There is also a renewal component to this model; as soon as the walker
transitions to a new vertex, all of the incident edges have their WTD’s reinitialized. Since
each ψ is a distribution, we have ∫ ∞

0
ψij(t)dt = 1.

Similarly the probability that an edge does appear between i and j in time [0, t] is∫ t

0
ψij(s)ds,
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and the probability that an edges does not appear in this time window is

(5) χij(t) := 1−
∫ t

0
ψij(s)ds.

Assuming for a moment that the walker has arrived at node j, we want to calculate the
probability Tij that it transitions to a neighboring node i. If i lies across a single edge
between the two nodes, this is of course Tij = ψij . An important distinction occurs when i
is one of many nodes leaving j; in this case, Tij is a weighted probability; both an edge need
appear between them at time t and all other edges should stay turned off during [0, t); i.e.,

(6) Tij(t) = ψij(t)
∏
k∼j
k 6=i

χkj(t) = −dχij(t)
dt

∏
k∼j
k 6=i

χkj(t).

From the functions Tij we can construct the effective transition matrix, T = [ρij ], whose
entries

ρij =

∫ ∞
0

Tij(t)dt

yield a total probability of transitioning from j to i. Also useful is the continuous transition
matrix T = [Tij ]. The probability that the walker is at node i at a given instance in time t
is denoted pi(t); it is the integral over the probabilities qi(s) of having arrived at time s ≤ t
weighted by the probability φi(t− s) of not having left since then, i.e.,

(7) pi(t) =

∫ t

0
φi(t− s)qi(s)ds.

In this light, we can express the probabilities p in Laplace space as the product

(8) p̂i(s) = φ̂i(s)q̂i(s).

This is the starting point for the generalized MW equation. If we let

(9) Ti(t) =
∑
j∼i

Tji(t)

be the probability that the walker leaves i between times t, t+ dt, then

φi(t) = 1−
∫ t

0
Ti(s)ds,

or in Laplace space, φ̂i(s) = 1
s (1− T̂i(s)). The other component qi(t) in equation (7), can be

found by summing over the probabilities q
(k)
i (t) of reaching node i at time t through exactly

k steps:

qi(t) =
∞∑
k=0

q
(k)
i (t).

These are related by the recursion relation

q
(k+1)
i (t) =

∫ t

0

∑
j∼i

Tij(t− τ)q
(k)
j (τ)

 dτ,
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which computes a probability of arriving in k + 1 steps as the product of probabilities of
arriving to neighbors of i in k steps weighted by the probability of transitioning along each
edge. In Laplace space,

q̂
(k+1)
i (s) =

∑
j∼i

T̂ij(s)q
(k)
j (s).

Summing over k and adding q̂
(0)
i (s),

q̂
(0)
i (s) +

∞∑
k=0

q̂
(k+1)
i (s) =

∑
j∼i

T̂ij(s)

∞∑
k=0

q
(k)
j (s) + q̂

(0)
i (s).

In matrix form,

q̂(s) = T̂q̂(s) + q̂(0)(s),

where q = [q1(t) q2(t) . . . qn(t)]T . Since q(0)(t) = p(0)δ(t), it holds q̂(0)(s) = p(0), yielding

q̂(s) = (Id−T)−1 q̂(0)(s).

Returning to equation (8), we obtain the generalized MW equation

p̂i(s) =
1

s
(1− T̂i(s))

n∑
k=1

(
Id− T̂ (s)

)−1

ik
pk(0),

which takes the Matrix form

(10) p̂(s) =
1

s

(
Id− D̂(s)

)(
Id− T̂(s)

)−1
p(0)

where (D̂)ij(s) = T̂i(s)δij . Omitting a full derivation[10], by differentiating the MW equation
and using convolution, one can obtain the integro-differential master equation for the active
random walk:

(11)
dp

dt
=
(
T(t) ? L−1{D̂−1(s)} − δ(t)

)
?K(t) ? p(t).

The star symbol is emboldened to emphasize that the matrix-vector products in the equation
are taken in the usual manner with the function convolution operation rather than the scalar
multiplication operation. Also, here, K(t) is called a memory kernel, defined in Laplace space
by

K̂(s) =
(
sD̂(s)

)(
Id− D̂(s)

)−1
.

This kernel characterizes the amount of memory in the system at a moment in time[3], and is
usually dependent on probabilities spanning over a nonvanishing amount of time. This means
that the dynamics of the system are generally non-Poissonian in nature; the exception to the
rule is when the WTD are themselves Poisson, in which case K(t) = δ(t)Id.

Looking towards the steady-state solution, one worthwhile point to reexamine is the distri-
bution Ti(t), the probability that the walker leaves node i between times t, t+ dt. As long as
the graph is connected and the WTDs between adjacent edges are nonzero, we expect that∫∞

0 Ti(t)dt = 1 for any i ∈ V , confirming that the walker is expected to transition from any
vertex in infinite time. So using equations (6) and (9) we have

Ti(t) =
∑
j∼i

Tji(t) = −
∑
j∼i

dχji(t)

dt

∏
k∼j
k 6=i

χjk(t) = − d

dt

∏
j∼i

χji(t)


(12)
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forcing

(13)

∫ ∞
0

Ti(t)dt = −

∏
j∼i

χji(t)

∞
t=0

= 1.

It is truly lucky that despite working within a dynamical system governed by an intimidating
integro-differential master equation, in the general case, it is possible to obtain an analytical
expression for the steady-state solution to equation (11). The derivation[10] is accessible,
but we will not reproduce it in full here. At the heart of the approach to the solution is an
application of the final value theorem to the MW equation (10). As in the case of the simple
random walk on networks, we expect there to exist a stationary distribution p∗ as a limit of
p(t) as long as the graph is connected. By the final value theorem and equation (10), one has

p∗ = lim
t→∞

p(t) = lim
s→0+

sp̂(s)

= lim
s→0+

(
Id− D̂(s)

)(
Id− T̂(s)

)−1
p(0)

The search for p∗ then becomes a search for the dominant eigenvector of

(Id−D̂(s))(Id−T̂(s))−1, which as an operator maps the initial distribution to the steady-state
distribution. As it turns out, this eigenvector coincides with the least dominant eigenvector,

with eigenvalue 0, of the matrix C := (Id− T) D
−1

, where Dij := E [Tj ] δij , which is invertible
in practice since the graph is assumed connected. Notice that as we confirmed in equation
(13), the effective transition matrix T is in fact stochastic; via Perron-Frobenius, this guar-
antees the existence of a unique eigenvector x with eigenvalue 1. In turn, the steady state
solution is

(14) p∗ = Dx,

since Cp∗ = (Id− T) D
−1

Dx = Idx− Tx = 0.

6.1. Example: The Poisson Case. Continuing in the manner of Hoffman, Porter, Lambiotte[10],
an interesting case study of the general theory presented above occurs when we choose the
WTDs of the edges to be Poisson; that is,

ψij(t) = λije
−λijt, λij , t ≥ 0.

Combining equations (5) and (6), we get

(15) Tij(t) = λije
−λijt

∏
k∼j
k 6=i

(
1−

∫ t

0
λkje

−λkjt
)

= λije
−Λjt,

where Λj =
∑

i∼j λij . Similarly Tj(t) = Λje
−Λjt, which gives T̂j(s) =

Λj

Λj+s and as a result

[D̂(s)−1]ij =
(

Λj

s+Λj

)
δij and [D̂(s)−1]ij =

(
1 + s

Λj

)
δij . We can then evaluate the memory

kernel in Laplace space:

(16) [K̂(s)]ij =
s

Λj

s+Λj

1− Λj

s+Λj

δij = Λjδij

Evaluating L−1{D̂−1(s)}ij =
(
δ(t) + δ′(t)

Λj

)
δij . Similarly, [K(t)]ij = L−1{Λjδij} = Λjδ(t)δij .

Gathering everything into the master equation (11) and expanding the matrix convolution
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products within the equation, we have:

dpi
dt

=
n∑
j=1

n∑
k=1

(
Tik(t) ? L−1{D̂−1(s)kk} − δ(t)δik

)
?Kkj(t) ? pj(t)

=

n∑
j=1

n∑
k=1

(
λike

−Λkt ?

(
δ(t) +

δ′(t)

Λk

)
− δ(t)δik

)
? Λjδ(t)δkj ? pj(t)

=

 n∑
j=1

λije
−Λjt ?

(
δ(t)Λj + δ′(t)

)
? pj(t)

− Λipi(t).

(17)

Using integration by parts,

e−Λjt ?
(
Λjδ(t) + δ′(t)

)
= Λje

−Λjt +

∫ t

0
e−Λj(t−s)δ′(s)ds = δ(t),

yielding the simplified master equation

(18)
dpi
dt

=

 n∑
j=1

λijpj(t)

− Λipi(t).

Making the qualitative assumption that λij = 0 when i � j, the above equation becomes

dpi
dt

=
∑
j∼i

λij (pj(t)− pi(t)) .

Solving for the steady-state solution, one sets the L.H.S. equal to 0 identically; this becomes
a Dirichlet problem for the graph Laplacian weighted by the intensities λij . In the very
interesting paper [7], Chung and Yau solve this problem (in a more general framework) using
discrete Green’s Functions.

As a final comment, note that setting λij = 1 when i ∼ j and λij = 0 otherwise, the
problem here reduces to −∆(p(t)) = 0, which we solved in the case of the asynchronous
random walk on a static underlying graph. This is all to conclude than when one chooses
the WTD to be uniformly Poisson on adjacent edges, the temporality of the edges becomes
redundant (think about it).
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